
IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, VOL. 26, NO. 1, JANUARY 2022 139

Speckle Noise Reduction for OCT Images Based
on Image Style Transfer and Conditional GAN

Yi Zhou , Kai Yu , Meng Wang , Yuhui Ma , Yuanyuan Peng , Zhongyue Chen, Weifang Zhu ,
Fei Shi , and Xinjian Chen , Senior Member, IEEE

Abstract—Raw optical coherence tomography (OCT) im-
ages typically are of low quality because speckle noise
blurs retinal structures, severely compromising visual qual-
ity and degrading performances of subsequent image anal-
ysis tasks. In our previous study (Ma et al., 2018) we have
developed a Conditional Generative Adversarial Network
(cGAN) for speckle noise removal in OCT images collected
by several commercial OCT scanners, which we collectively
refer to as scanner T. In this paper, we improve the cGAN
model and apply it to our in-house OCT scanner (scan-
ner B) for speckle noise suppression. The proposed model
consists of two steps: 1) We train a Cycle-Consistent GAN
(CycleGAN) to learn style transfer between two OCT im-
age datasets collected by different scanners. The purpose
of the CycleGAN is to leverage the ground truth dataset
created in our previous study. 2) We train a mini-cGAN
model based on the PatchGAN mechanism with the ground
truth dataset to suppress speckle noise in OCT images.
After training, we first apply the CycleGAN model to con-
vert raw images collected by scanner B to match the style
of the images from scanner T, and subsequently use the
mini-cGAN model to suppress speckle noise in the style
transferred images. We evaluate the proposed method on a
dataset collected by scanner B. Experimental results show
that the improved model outperforms our previous method
and other state-of-the-art models in speckle noise removal,
retinal structure preservation and contrast enhancement.

Index Terms—Optical coherence tomography, Speckle
noise reduction, Generative adversarial networks.

I. INTRODUCTION

O PTICAL coherence tomography (OCT) is a method of
acquiring and processing optical signals. It can scan
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optical scattering media such as biological tissues, and the
obtained three-dimensional image resolution can reach the mi-
cron level. The first generation of OCT was time-domain OCT
(TD-OCT) [2], which used temporal information related to
position of a moving reference mirror to encode the position
of each cut. In 1993, for the first time, OCT was used to scan
retinal structures in vivo [3]. In 2002, spectral-domain OCT
(SD-OCT) was developed [4], which simultaneously acquired
all information from a single one-dimensional scan (Ascan)
of tissue by evaluating frequency spectrum of the interference
between reflected light and a stationary reference mirror. The
use of fixed mirrors has allowed the scanning processing to
be much faster, thus greatly increasing the data availability. A
two-dimensional image (Bscan) can be achieved by laterally
combining a series of many Ascans.

The quality of an OCT imaging system is usually categorized
by its sensitivity, which is defined as the weakest signal that
can be detected in the noise range. Signal can be amplified
by increasing incident power or exposure time of the detector.
However, the power is limited by imaging safety constraints,
and an increase in exposure time leads to a significant increase
in data acquisition time, resulting in strong autocorrelation of
the signal and blurred image reconstructions. Therefore, most
OCT systems acquire data with the shortest allowed exposure
time and the highest acceptable incident power, and improve
image quality through data post-processing.

Similar to many other imaging modalities, OCT images suffer
from speckle noise, which is inherently granular in OCT. Speckle
noise can degrade quality of OCT images, impair visual inter-
pretation and diagnosis, and make automated image analysis
such as retinal layer segmentation for various layer thickness
measurements challenging. Therefore, speckle noise reduction
is critical for both visual interpretation and automatic analysis
of retinal OCT. However, speckle noise is inherently a randomly
modulated signal caused by temporal and spatial coherence of
light waves, the basis of interferometry, on which the OCT
technique is built. As such, speckles have dual roles of a noise
source and an information carrier for microstructure of tissue.
A complete elimination of speckles is undesirable.

Speckle suppression techniques are usually divided into two
categories: hardware compensation and algorithmic suppres-
sion. Typically, hardware speckle noise compensation methods
are based on the acquisition of multiple frames with uncorrelated
noise that can be averaged out to improve the signal-to-noise
ratio (SNR). Duan et al. [5] proposed interleaved OCT (iOCT),
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for spatial and angular compounding to restrain speckle noise.
Based on strain compounding, Kennedy et al. [6] presented a
speckle reduction technique for OCT. Cheng et al. [7] proposed a
dual-beam angular compounding method based on angular com-
pounding to reduce speckle noise and improve SNR. However,
the main drawbacks inherent in hardware speckle noise com-
pensation methods include longer data acquisition time, more
complex data acquisition processes, and increased complexity
in the optomechanical design of OCT imaging systems.

Algorithmic suppression aims to reduce speckle noise through
post-processing of OCT images while maintaining image reso-
lution, contrast, and edge fidelity. Many traditional algorithmic
methods have been proposed for automatic OCT denoise and
enhancement, and can be categorized as: 1). Digital filter based
techniques, such as Lee filter [8], Kuan filter [9], enhanced
Lee filter [10], adaptive Wiener filter [11], weighted median
filter [12], anisotropic diffusion filtering [13], [14], non-local
methods [15], [16], block-matching and 3D filtering methods
(BM3D) [17], 2). Sparse transform-based methods based on
different transformations including wavelets [18], [19], curvelet
transform [20], dictionary learning [21], [22], and 3). Statistical
model-based methods [23]–[25] and methods based on low-rank
decomposition [26], [27].

In recent years, deep learning has injected new vitality into
image denoising and enhancement. Remez et al. [28] proposed
a fully convolutional neural network (CNN) architecture that
allows us to take advantage of the progressive nature of the
denoising process. Yang et al. [29] proposed to expand the
computation pipeline of the BM3D algorithm into a CNN
structure. Zhang et al. [30] used residual learning strategies
and batch normalization to improve the feedforward denoising
CNN (DnCNN) to target Gaussian denoising (blind Gaussian
denoising) at unknown noise levels. Dong et al. [31] proposed a
denoising prior driven network for image restoration. However,
all the above work utilized an additive noise model. The noise
of our OCT image is far from additive. Therefore, these models
are not suitable for speckle noise in OCT images.

In our previous study, Ma et al. [1] proposed a cGAN
model [32] to achieve speckle noise removal, which is the first
application of image-to-image cGAN network to OCT speckle
noise reduction. The cGAN model does not assume any spe-
cific distribution model and learns it from data. Through the
competition between a generator and a discriminator, the cGAN
model can achieve speckle noise reduction and contrast enhance-
ment simultaneously. The model was applied to OCT images
collected by commercial scanners (scanner T) and achieved
excellent speckle noise suppression results. The cGAN model
was trained with the paired ground truth datasets created by
scanner T using the method described in Section II-E. Different
from GAN models, cGAN model has conditional inputs to guide
data generation and belongs to supervised learning, making it
a good model candidate for applications where paired ground
truth datasets are available for training.

Recently, we have developed an in-house OCT scanner (scan-
ner B) and its raw images are also subjected to the speckle
noise blurring. In this paper, we improve our previous method
and develop a mini-cGAN model based on the PatchGAN

mechanism [32] to remove speckle noise for scanner B. It is
noticed that the image style (histogram) of scanner B is different
from that of scanner T . To leverage the existing ground truth
dataset for training, we first train a CycleGAN [33] to learn
the bi-directional style transfer between scanners T and B. After
training, we apply the CycleGAN model to images from scanner
B to match the style of images from scanner T . Finally, we train
the mini-cGAN model with the existing ground truth dataset
for denoising of images obtained by scanner B. The main
contributions of the paper are as follows:

� A novel denoising method is proposed to suppress speckle
noise in retinal OCT images and achieves superb per-
formances in retinal structure preservation and contrast
enhancement.

� A CycleGAN model is implemented for image histogram
and style matching to leverage ground truth datasets col-
lected by different scanners for training.

� A miniaturised patch cGAN is developed that significantly
improves speckle noise removal and subsequent retinal
layer segmentation in OCT images.

II. METHOD

The diagram of the proposed work is illustrated in Fig. 1,
which consists of two independent networks: a CycleGAN for
image style transfer and a mini-cGAN for denoising. In the
training phase, we use unpaired datasets, B and T , collected by
the scanners B and T, respectively, for training. For CycleGAN,
we train two generators, GB and GT , to perform bi-directional
image style transfer between B and T . CycleGAN also has two
discriminators DB and DT , to discriminate real and generated
image pairs, T vs. GB(B) and B vs. GT (T ), respectively. For
mini-cGAN, TGT are ground truth images obtained from T by
the method described in Section II-E. The mini-cGAN model
takes TGT and T as inputs to produce G(T,Z) as denoised
images, where Z denotes noise. The discriminator D tries
to identify real and fake ground truth image pairs, TGT and
G(T,Z). In the testing phase, we first use the trained CycleGAN
model to covert B as GB(B) that match the style of images
T . We then input GB(B) to the mini-cGAN’s generator G to
produce denoised images G(GB(B), Z). The testing flowchart
is shown in Fig. 2.

A. Overview of CycleGAN and cGAN

GAN models are trained to learn distribution from real images
and generate realistic images by randomly sampling from the
learned distribution. However, GANs do not have control on
the contents of the generated data. In contrast to original GAN
models, conditional GAN (cGAN) models add a condition K
to the generator to control the generated data. The condition
K can be any format including category labels or images,
and data used to train cGAN models are always paired with
its condition. CycleGAN models aim to form a bi-directional
universal mapping between data domain T and data domain
B, and the goal of learning is style transfer between domains
rather than a specific one-to-one data mapping, i.e., the cGAN’s
dependence on data pairing is eliminated.

Authorized licensed use limited to: Soochow University. Downloaded on February 06,2022 at 03:06:35 UTC from IEEE Xplore.  Restrictions apply. 



ZHOU et al.: SPECKLE NOISE REDUCTION FOR OCT IMAGES BASED ON IMAGE STYLE TRANSFER AND CONDITIONAL GAN 141

Fig. 1. Overview of the proposed method in the training phase. We use unpaired datasets, B and T , collected by the scanners B and T,
respectively, for training. For CycleGAN, we train two generators, GB and GT , to perform bi-directional image style transfer between B and T .
CycleGAN also has two discriminators DB and DT , to discriminate real and generated image pairs, T vs. GB(B) and B vs. GT (T ), respectively.
For mini-cGAN, TGT are ground truth images obtained by the method described in Section II-E. The mini-cGAN model takes TGT and T as inputs
to produce G(T,Z) as denoised images, where Z denotes noise. The discriminator D tries to identify real and fake ground truth image pairs, TGT

and G(T,Z).

Fig. 2. Flowchart of the proposed method in the testing phase. We
first input images, B, from scanner B, into generator GB to obtain the
style transferred images GB(B), and then input GB(B) into the mini-
cGAN’s generator, G, to obtain denoised images G(GB(B), Z), where
Z denotes noise.

B. Objective Functions

1) CycleGAN Loss: The GAN loss is applied to both gener-
ators, GT : T → B and GB : B → T . For the generator GT and
its discriminator DB , the loss function LGAN is expressed as:

LGAN (GT , DB , T,B) = Eb∼Pdata(b)[logDB(b)]

+ Et∼Pdata(t)[log(1−DB(GT (t)))], (1)

where b ∈ B and t ∈ T are individual image samples from B
and T , respectively.GT tries to generate imagesGT (t) that look
similar to images fromB, whileDB aims to distinguish between
translated samples GT (t) and real sample b.

Individual GAN loss usually cannot guarantee that the learned
function will map a particular input t to the desired output b. To
further reduce the space of possible mapping functions, Zhu
et al. [33] argued that the learned mapping function should be
cycle-consistent: for each image t ∈ T , the image translation
cycle should be able to bring t back to the original domain,
i.e., t → GT (t) → GB(GT (t)) ≈ t, and call it forward cyclic
consistency. Correspondingly, GT and GB should also satisfy
backward cyclic consistency, b → GB(b) → GT (GB(b)) ≈ b.
A cycle consistency loss of Lcyc is proposed as,

Lcyc(GT , GB) = Et∼Pdata(t)[‖GB(GT (t))− t‖1]
+ Eb∼Pdata(b)[‖GT (GB(b))− b‖1]. (2)

The full objective function of CycleGAN can be shown as
follows:

LCycleGAN (GT , GB , DT , DB) = LGAN (GT , DB , T,B)

+ LGAN (GB , DT , B, T )

+ λLcyc(GT , GB), (3)

where λ controls the relative importance of the two objectives,
LGAN and Lcyc. The overall goal is to solve,

G∗
T , G

∗
B = arg min

GT ,GB

max
DT ,DB

L(GT , GB , DT , DB), (4)

where G∗
T and G∗

B represent the optimized generator of T → B
and B → T , respectively.
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2) mini-CGAN Loss: The objective function of the mini-
cGAN can be shown as follows [32]:

LcGAN (G,D) = Et,tgt∼Pdata(t,tgt)[logD(t, tgt)]

+ Et∼Pdata(t),z∼Pz(z)[log(1−D(t, G(t, z)))], (5)

where t ∈ T is the input image, z is the random noise, tgt ∈
TGT is the corresponding ground truth for t, D(t, tgt) is the
output of the discriminator, and G(t, z) is the output image of
the generator. The first term is the expected value calculated
for all training images and the corresponding ground truth, and
the second term is the expected value calculated for all training
images and random noise.

In training, G tries to minimize the objective function while
D tries to maximize it, leading to the following optimization
problem,

G∗ = argmin
G

max
D

L(G,D). (6)

where G∗ represents the optimized generator.
It has proven that it is useful to combine the objective function

of cGAN with the traditional loss (such as L1 or L2 loss) [32].
The traditional loss functions incorporate spatial information
and can improve quality of the generated images. The L2 loss
punishes errors caused by uniform distribution in space leading
to blurred images, whileL1 loss punishes errors caused by sparse
distribution in space resulting in sharper images. TheL1 loss can
be formulated as,

LL1
(G) = Et,tgt,z[‖tgt −G(t, z)‖1], (7)

We integrate the L1 loss into the final objective optimization
function of cGAN as,

G∗ = argmin
G

max
D

L(G,D) + αLL1
(G). (8)

where α is a controlling parameter.

C. Network Structure

1) Implementation of CycleGAN: In this paper, the genera-
tors of CycleGAN are two U-Net networks [34]. U-Net has the
encoder-decoder architecture with skip connections between the
symmetric layers in the encoder and the decoder. The discrim-
inators of CycleGAN are two PatchGAN models, which are
used to identify whether or not an extracted image patch is from
a particular domain. The building blocks for both U-Net and
PatchGAN are typical layers used in deep learning models in-
cluding convolutional, InstanceNorm [35] and LeakyReLU [36].

Our goal is to perform style transfer for the original image,
Bori, and leave the structure and pathology information unal-
tered. The structural and pathology information are reflected
at both the local and global scales in the image. U-Net’s sym-
metrical direct connections at different resolution levels provide
an effective solution to preserve those information during OCT
image style transfer.

Unlike traditional discriminators that discriminate the proba-
bility of the truthfulness of an entire image, PatchGAN attempts
to identify the truthfulness of each p× p patch in the image. It
has been shown that p can be much smaller than the full size of
the image and still produce high-quality results. Smaller p has

fewer parameters, runs faster, and can be applied to arbitrarily
large images. Such discriminator regards the image as a Markov
random field and assumes independence between pixels sepa-
rated by more than the patch diameter. The Markov discriminator
tends to preserve high-resolution information leading to sharper
results.

During training, the Adam solver [37] is used to optimize
both the generator and the discriminator. We use the standard
training method to alternately optimize the generator and the
discriminator. In testing, only the generators are used.

2) Implementation of mini-CGAN: In this paper, we propose
a mini-cGAN network for denoising, in which the generator and
the discriminator utilize the PatchGAN mechanism to work with
image patches rather than whole OCT images. The advantage of
PatchGAN is that it requires much less training data because one
whole image can generate many image patches for training. We
use a U-Net network as the backbone for the generator, which
takes ps × ps patches from the original image and generates
same sized denoised image patches. Since most of the import
retinal information in OCT images are located in the certain
regions in the image, image patches are sampled from those
regions with a high probability.

In the testing phase, we input patches with a size of ps × ps
to the generator and scan through the whole image to build the
entire denoised image. We set no, the number of overlapped
patches at each pixel, as a controllable parameter. The final
output image is the average of all the denoised overlapping
patches. Detailed steps are described as follows.

1) Pad the original size H ×W to Hpad ×Wpad, where
Hpad = (H + ps + ph), Wpad = (W + ps + pw), and
ph = ps −H%ps, pw = ps −W%ps, % is the remain-
der operation. Both of Hpad and Wpad are divisible by
ps.

2) Determine the top-left corner coordinates of the ith box,
(xi, yi), as xi = yi = ps ÷ no ×Δi, where Δi is the
number of cycles from 0 to (no − 1) and the box has a
size of (Hpad − ps)× (Wpad − ps).

3) Split the box into non-overlapping patches with a size of
ps × ps, input all patches into the trained generator and
stitch output patches into a single output image. Repeat
this step to get no output images.

4) Average the no output images and remove the padded
parts to get the final denoised image.

Due to the specificity of our scanner B, reflective artifacts
caused by light signal reconstruction in the choroid area below
retina in OCT image need to be removed appropriately. Our
random patch training method resolves this issue because the
input content of the network is the patch for each OCT image.
Although most patches are located in the retina of the OCT,
they also cover a variety of background areas, which allows the
network to learn to remove artifacts appeared in the background.

D. Data

We collected 3D volumes and slices raw OCT data from
scanners B and T, and the study was approved by the Institutional
Review Board of Suzhou University and informed consent was
obtained from all subjects.
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Fig. 3. Manually defined ROIs on 6 original noisy Bscans for performance metrics computation. Red and green rectangles represent signal and
background regions defined for SNR and CNR calculation, respectively. Blue curves are boundaries defined for EPI computation. (a) and (b) are
six-line scanning mode in macular pattern, (c) and (d) are macular region scanning mode in glaucoma pattern, and (e) and (f) are optic disc region
scanning mode in glaucoma pattern, corresponding to the three different scanning modes as listed in Table I.

TABLE I
SPECIFICATIONS OF DATA B FROM SCANNER B

1) Data From Scanner B: Data from a non-commercial in-
house OCT scanner B were acquired by scanning the central
region of the 3D macular with a center wavelength of 840 nm.
We collected three different scanning modes based on two
patterns from 10 individuals. Fig. 3 shows 6 Bscan images for
performance evaluation. All the data came from normal eyes.
Table I lists the specifications of scanning modes and patterns.

2) Data From Scanner T: Scanner T consists of four com-
mercial scanners, Topcon DRI-1 Atlantis (Japan Topcon Cor-
poration), Topcon 3D OCT 2000 (Japan Topcon Corporation),
Topcon 3D OCT 1000 (Japan Topcon Corporation), Zeiss Cirrus
4000 (German Carl Zeiss Corporation). We collected three
datasets by using scanner T [1]: Training dataset1, Training
dataset2 and Testing datasets.

Training dataset1 was acquired by scanning a 3D macular
center region with a center wavelength of 1050 nm from Top-
con DRI-1 Atlantis. The data volume size is 512× 992× 256
(width × height × number of slices), which corresponds to the
retina of the size of 6 mm × 2.6 mm × 6 mm. 20 acquisitions
were repeated at short intervals from normal eyes.

Training dataset2 was acquired by scanning a 3D macular
center region with a center wavelength of 840 nm from Top-
con 3D OCT 2000. The data volume size is 512× 885× 128
(width× height× number of slices), corresponding to the retina
of the size of 6 mm × 2.3 mm × 6 mm. 20 acquisitions were
repeated at short intervals from two eyes of a normal person.

The testing datasets contains 2D images of 9 different scan-
ning modes from 4 different scanners. The data came from
both normal and pathological eyes. Table II briefly lists the
specifications of the 2 groups of training datasets and 9 testing
data volumes, more details can be found in [1].

E. Ground Truth for Training

1) CycleGAN Training Data: Though histogram matching
can quickly match histograms between image domains, it does
not produce a general mapping that can be applied directly to
unseen images. In this study, we train a CycleGAN model that
learns a style transfer mapping function from images collected
by scanner B to these by scanner T. Since CycleGAN does not
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TABLE II
SPECIFICATIONS OF DATA T FROM SCANNER T

require paired images for training, we use unpaired datasets
collected by the two scanners for training.

2) mini-CGAN Training Data: The proposed mini-cGAN
model requires paired raw/clean images for training, where raw
images contain noises while clean images are the denoised
counterparts. We utilized an existing dataset created by Ma
et al. [1] for training. In the dataset, the denoised images were
produced by registering and averaging Bscans images repeatedly
acquired at the same location from the same person. We briefly
describe the process as follows.

The 3D OCT acquisition scanning mode was performed on
the same eye of the same personM times. During the acquisition
process, the person kept the eyeball as still as possible to make
the differences among different acquisitions minimal. Assuming
each scan volume contains N images, M ×N slice images for
the person were produced in total. To create a training image pair,
a random image was first selected from one of the volumes as the
noised image. The 2n adjacent slices and itself from the same
volume, and the 2n+ 1 adjacent slices from the remainingM −
1 volumes were selected, registered by affine transformation,
and averaged to create the denoised counterpart. There were in
total L = (2n+ 1)×M − 1 slices registered and averaged to
created the denoised image.

Because human eye cannot be completely still, averaging all
L slices often results to a blurred image. MSSIM score [38]
between the noised image and its neighbor slice was used
to rank the L slices and only the first l slices were kept to
perform the registration and averaging. In addition, a piecewise
linear image stretch was performed on the denoised image for
contract enhancement. Intensity values less than the average of
background region set to 0, and then all intensities were scaled
to the interval of [0, 255].

The training “dataset1” and “dataset2” listed in Table II were
used to created the ground truth. M = 20, n = 3 and l = 60
were chosen for “dataset1” while M = 20, n = 3, and l = 40
were chosen for “dataset2”. These parameters were chosen by
trial and error to obtain the best quality for denoised images.
There are 256 image pairs in each of the datasets and all pairs
were combined to train the mini-cGAN model.

F. Evaluation Metrics

We utilize four performance metrics to evaluate different
models including signal-to-noise ratio (SNR), contrast-to-noise
ration (CNR), speckle suppression index (SSI) [15] and edge

preservation index (EPI). Six regions of interest (ROIs) areas
were manually defined to compute the performance metrics as
shown in Fig. 3. Green rectangles represent background regions.
Red rectangles denote signal regions (located in the retinal neural
fiber layer (RNFL), inner retina, and the retinal pigment ep-
ithelium (RPE) complex, respectively). Blue boundaries (upper
boundary of RNFL, inner-outer retina boundary and the lower
boundary of RPE) denote the locations where EPI is calculated.

1) Signal-to-Noise Ratio (SNR): SNR reflects noise level in
image, and it is defined as,

SNR = 10 lg

(
σ2
s

σ2
b

)
, (9)

where σs and σb denote the standard deviation of the signal and
background region, respectively.

2) Contrast-to-Noise Ratio (CNR): CNR is the contrast be-
tween signal region and background region,

CNR = 10 lg

(
|μi − μb|√
σ2
i + σ2

b

)
, (10)

where μi and σi denote the mean and standard deviation of ith

signal region in the image, while μb and σb denote the mean and
standard deviation of background region. In our experiments,
the average CNR was computed over the 3 signal ROIs.

3) Speckle Suppression Index (SSI): SSI measures ratio be-
tween noise and denoised images. SSI metric tends to be less
than 1 when noise is well reduced,

SSI =
σo

μo
× μd

σd
, (11)

where μo and σo denote the mean and standard deviation of a
noisy image, μd and σd denote the mean and standard deviation
of the denoised version.

4) Edge Preservation Index (EPI): EPI reflects the extent of
details of edge preserved in the image after denoising. EPI in
the longitudinal direction is defined as,

EPI =

∑
i

∑
j |Id(i+ 1, j)− Id(i, j)|∑

i

∑
j |Io(i+ 1, j)− Io(i, j)| , (12)

where Io and Id represent a noisy image and the denoised
version, while i and j represent coordinates in the longitudinal
and lateral direction in the image. EPI may not be an accurate in-
dicator for edge-preservation if calculated over the entire image,
since the gradient will become smaller in homogeneous regions
after denoising. In our experiments, the neighborhood was set
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Fig. 4. Denoised Bscans by the proposed method, corresponding to the Bscans in Fig. 3.

as a band with height of 7 pixels centered at the boundaries as
shown in Fig. 3.

III. EXPERIMENTS AND RESULTS

A. Implementation Details

1) Cyclegan: We found that when data augmentation is used
during training, it would make the loss difficult to converge
and cause the generator to learn incorrect style transfer, i.e.,
generating retinal structure artifacts in the background region,
which is undesirable. Therefore, we used the data from the
scanner T without data augmentation to perform style transfer.

The generator of CycleGAN consists of a 7-layer U-Net,
which has 7 up and 7 down layers. For the discriminator net-
works, we used a 70× 70 PatchGAN, which aimed to classify
whether or not 70× 70 overlapping image patches were real or
fake. The batch size was set to 1, and the number of training
epochs was set to 100. The proposed CycleGAN was imple-
mented using Pytorch and was trained using NVIDIA GTX
1660Ti GPU with 6 G memory.

2) Mini-Cgan: In cGAN training, we used data augmenta-
tion to improve training efficiency, including flipping along the
transverse axis, scaling, rotation, and non-rigid transformations.
Training data size was increased by a factor of two after the
augmentation. For all the experiments, we set λ = 10 in [3] and
α = 100 in Eq [8], respectively, and utilized the Adam solver
with an initial learning rate of 0.0002 and a momentum of 0.5
for optimization.

During training, we set patch size ps to 128. Small ps values
will cause the model to ignore large structures of the retina,
and large ps values result inadequate noise removal. We set the
number of overlapping no to 32. We found that if no was too
small, there were mesh-like noises presented in resulted images.
This is because each output patch produced a distinct boundary,
and the average of few patches resulted distinguish boundaries.
While no was too large, such as 64, resulted much longer com-
putational time without significant performance improvement.
The number of layers of the generator was a 5-layer U-Net, and
the discriminator was an 8× 8 PatchGAN. The batch size was
set to 60, and the number of training epochs was 2000. The
proposed mini-cGAN was implemented using Pytorch and was
trained using NVIDIA GTX 1080Ti GPU with 12 G memory.

B. Experimental Results

In this section, we will first show the results by the proposed
model and qualitatively assess it by inspection. We then quan-
titatively compare it with other methods using the performance
metrics described in Section II-F.

1) Results by the Proposed Model: Fig. 4 shows denoised
images for the Bscans shown in Fig. 3. Through visual inspec-
tion, we observe that the proposed method can well retain the
overall structures and details of the retina while suppressing
speckle noise. The background is almost uniformly black, and
contrasts among different layers of the retina are clear. The
proposed model worked for different patterns, scanning modes,
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Fig. 5. Results for (d) Bscan in Fig. 3, a 150 × 150 region cropped from every images in the same position. (a) Original image, (b) Our previous
method [1], (c) CycleGAN + mini-cGAN(no = 8) (d) CycleGAN + mini-cGAN(no = 16) (e) CycleGAN + mini-cGAN(no = 32) (f) CycleGAN +
mini-cGAN(no = 64).

TABLE III
EVALUATION METRICS FOR DIFFERENT SETTINGS (MEAN ± STANDARD)

different resolutions, and obtained qualitatively good results by
inspection.

2) Comparison to Our Previous Work: We ran the proposed
model with different values for no and compared it to our
previous method, Edge-cGAN [1]. Results are shown in Fig. 5
and Table III. Fig. 5 shows the denoised results from different
runs. It is observed that denoised images by the proposed method
have better contrast among different layers of the retina and
darker background regions as compared to the result by our
previous method (Fig. 5(b)). Table III lists the quantitative
performance metrics of the competing methods. Both of our pre-
vious method and the proposed method significantly improved
upon the original images. The proposed method outperformed
our previous method in all the four performance metrics and
achieved best SNR and CNR with no = 64, and best SSI and
EPI with no = 32.

TABLE IV
STATISTICAL ANALYSIS (p-VALUE) OF THE PROPOSED METHOD VERSE OUR

PREVIOUS METHOD

Via T -test, we investigated the statistical significance of the
performance improvements by the proposed method over our
previous method. As can be seen in Table IV, all of the SSI and
EPI improvements are statistically significant with p-values less
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Fig. 6. Results for (b) Bscan in Fig. 3, a 150 × 150 region cropped from every images in the same position. (a) Original image (b) Original image
after CycleGAN (c) NLM (d) BM3D (e) STROLLR (f) K-SVD (g) MAP (h) DnCNN (i) DPDNN (j) NAGAN + mini-cGAN (no = 32) (k) Our previous
method [1] (l) Proposed (CycleGAN + mini-cGAN (no =32)).

than 0.05. CNR improvements are significant for n0 equaled 32
and 64. However, all SNR improvements are not significant.

3) Comparison to the State of the Arts: We compared the
proposed method with the state-of-the-art methods, including
non-local means (NLM) [39], block-matching and 3D filter-
ing (BM3D) [40], sparsifying transform learning and low-rank
method (STROLLR) [41], 3D complex wavelet based K-SVD
for OCT denoising [19], maximum-a-posteriori (MAP) estima-
tion based on local statistical model for OCT denoising [25],
deep CNN with residual learning (DnCNN) [30], denoising
prior driven DNN for image restoration (DPDNN) [31], noise
adaptation generative adversarial network (NAGAN) [42], and
our previous method: the edge-sensitive cGAN [1]. In these
experiments, parameters for each of the methods were set so
that it can achieve best result for the application.

Fig. 6 shows denoised images by the competing methods.
Visual inspection reveals that the proposed method achieved
the best result (Fig. 6(l)), our previous method ranks the second
(Fig. 6(k)), NAGAN had serious artifacts (Fig. 6(j)), and all other

methods either over-smoothed the input image (NLM, BM3D,
and STROLLR, Fig. 6(c)–(e)) or still presented speckle noise in
the results (Fig. 6(f)–(i)). Table V shows qualitative performance
metrics indicating that the proposed method achieved the best
CNR, SSI and EPI. DPDNN achieved the best SNR among all
competing methods.

4) Application in Retinal Layer Segmentation: To test if the
denoised OCT images can improve subsequent image analysis,
we conducted retinal layer segmentation on original and de-
noised OCT images using the context pyramid fusion network
(CPFNet) [43]. We collected 6272 retinal OCT B-scan images
from 49 individuals, with 128 B-scan images acquired per per-
son. The layer1 (from nerve fiber layer to outer plexiform layer),
layer2 (from outer nuclear layer to myoid zone layer) and layer3
(from ellipsoid zone layer to retinal pigment epithelium layer)
were manually labeled as ground truth under the supervision of a
senior ophthalmologist. We divided the data into training and test
sets with a ratio of 39 vs 10 individuals. Example segmentation
results and average Dice coefficient (DSC) are shown in Fig. 7
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TABLE V
EVALUATION METRICS FOR DIFFERENT DENOISING METHODS ON BSCANS WITH CYCLEGAN (MEAN ± STANDARD)

Fig. 7. Retinal layer segmentation results. (a) and (f) Original images,
(b) and (g) Denoised images, (c) and (h) Segmentation results of original
images, (d) and (i) Segmentation results of denoised images, (e) and (j)
Ground truth. Red, green and blue regions represent layer1, layer2 and
layer3, respectively.

TABLE VI
THE DICE COEFFICIENT OF SEGMENTATION (%)

and Table VI, respectively. It is observed that the segmentation
results on the denoised images have better structural information
of retinal layers, and segmentation accuracies in terms of DSC
are improved as compared with these on the original images.

IV. DISCUSSION

In our previous study [1], we developed low-quality noise
image and high-quality denoised image pair datasets for training.
In the current investigation, we leveraged the training datasets to
improve image quality of our in-house scanner (scanner B) by

converting style of the raw image by scanner B to match the style
of scanner T, with which the training datasets were created. The
image style conversion was achieved by the CycleGAN model
that learned different styles from unpaired images by both scan-
ners. In addition, we modified the cGAN model in our previous
study to a mini-GAN structure that achieved sharper details in
the denoised images. The enhanced model outperformed our
previous model in term of all the four performance metrics as
shown in Table III.

The proposed method achieved the best visual quality as com-
pared to the state-of-the-art methods (Fig. 6). NLM, BM3D and
STROLLR suffered from excessive smoothing, leading to loss
of information along regions with barely visible borders among
layers. K-SVD and MAP did not effectively remove noise in both
background and intra-retinal regions. MAP performed worse in
preserving retinal structures (Fig. 6(g)), which may be due to
unstable speckle noise parameter prediction. DnCNN performed
well in retina regions but left some artifacts in background.
DPDNN achieved good performances in background while the
interlayer details were not well maintained. NAGAN had serious
artifacts, which severely blurred retinal structures, though it
performed well for contrast enhancement. As compared to the
proposed method (Fig. 6(l)), our previous model did not preserve
details among the layers under retina (Fig. 6(k)).

The quantitative evaluation metrics of the competing methods
are listed in Table V. All methods improved image quality upon
the original noise image as measured by all the four performance
metrics. The proposed method achieved best results in CNR, SSI,
and EPI, while DPDNN obtained the best SNR. The metrics of
CNR, SSI, and EPI represent contrast, speckle suppression and
edge preservation performances in the resulted image, respec-
tively, indicating that the proposed method can preserve detail
information while suppressing noise.

DPDNN over-smoothed input images and obtained better
SNRs. DPDNN is a mean squared error (MSE) based deep
learning model while the proposed method is based on the
GAN loss. As pointed out by Ledig et al. [44], minimizing
MSE maximizes SNR because the solution is given by the
average of many possible candidate solutions, while GAN based
optimization only sample one candidate as solution. Therefore,
it is not surprising that DPDNN over-smoothed the image with a
high SNR but could not preserve detail information. In practice,
trade-offs must be made to best serve for specific applications.
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CycleGAN has been applied in medical imaging field for cross
modal synthesis such as generating CT-like images based on MR
images [45], denoising [46], [47] and registration [48]–[50]. The
cGAN model has been applied for supervised or semi-supervised
learning for registration [51], denoising [52], reconstruction [53]
and superresolution [54]. In the proposed method, we integrated
CycleGAN and cGAN based on the PatchGAN mechanism to
achieve cross-domain image denoising and contrast enhance-
ment. The proposed model achieved a balance between noise
suppression and contrast enhancement.

The objectives of speckle noise suppression in OCT images
are to improve visual quality of the image and subsequent retinal
layer segmentation performances. From Fig. 5 and Fig. 6, we
can see the visual quality of denoised images is significantly
improved as compared with the original images. Fig. 7 shows
that the layer structure information in the denoised images are
much sharper than those in the original images and the improved
structure information did improve the retinal layer segmentation
accuracies as shown in Table VI.

Our study has limitations. First, the proposed method is not
an end-to-end learning model, and requires two separate steps
to train the two modules. Second, the final result during testing
is the average of multiple overlapped patches produced by the
trained mini-cGAN model, which increases the testing complex-
ity. As our future work, we will investigate an integrated model
that incorporates image style transfer and noise suppression into
a unified framework. In addition, we will explore methods to
reduce parameters in the network to improve its efficiency.

V. CONCLUSION

In this paper, we proposed a new speckle noise reduction
method for retinal OCT images. The method consists of a Cycle-
GAN model for image style transfer between two datasets and a
mini-cGAN network for image denoising and enhancement. The
mini-cGAN network was based on the PatchGAN mechanism
in both training and testing. The proposed method achieved
better results in speckle noise suppression, edge preservation,
and contrast enhancement on retinal OCT images collected from
different scanning modes, as compared to our previous method
and other competing state-of-the-art models.
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