1168

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 4, APRIL 2021 EFAB N &

@

P33

Processing
Society

—(0——— ks

Semi-Supervised Capsule cGAN for Speckle
Noise Reduction in Retinal OCT Images

Meng Wang™', Weifang Zhu™, Kai Yu

, Zhongyue Chen, Fei Shi

, Yi Zhou, Yuhui Ma"™,

Yuanyuan Peng™, Dengsen Bao, Shuanglang Feng™, Lei Ye, Dehui Xiang™, Member, IEEE,

and Xinjian Chen

Abstract—Speckle noise is the main cause of poor
optical coherence tomography (OCT) image quality.
Convolutional neural networks (CNNs) have shown
remarkable performances for speckle noise reduction.
However, speckle noise denoising still meets great
challenges because the deep learning-based methods
need a large amount of labeled data whose acquisition is
time-consuming or expensive. Besides, many CNNs-based
methods design complex structure based networks with
lots of parameters to improve the denoising performance,
which consume hardware resources severely and are prone
to overfitting. To solve these problems, we propose a novel
semi-supervised learning based method for speckle noise
denoising in retinal OCT images. First, to improve the
model’s ability to capture complex and sparse features in
OCT images, and avoid the problem of a great increase
of parameters, a novel capsule conditional generative
adversarial network (Caps-cGAN) with small number of
parameters is proposed to construct the semi-supervised
learning system. Then, to tackle the problem of retinal
structure information loss in OCT images caused by
lack of detailed guidance during unsupervised learning,
a novel joint semi-supervised loss function composed of
unsupervised loss and supervised loss is proposed to train
the model. Compared with other state-of-the-art methods,
the proposed semi-supervised method is suitable for retinal
OCT images collected from different OCT devices and can
achieve better performance even only using half of the
training data.
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|. INTRODUCTION

PTICAL coherence tomography (OCT) is a non-invasive

imaging technology proposed by Huang ef al. [1], which
can capture cross-sectional image of biological tissue and has
been widely used. In the ophthalmology clinic for the diagno-
sis and monitoring of retinal diseases [2], [3]. Speckle noise is
one of the most common noises generated in OCT imaging.
Although the imaging technology and equipment have been
continuously updated in recent years, the problem of speckle
noise has not been solved very well, and it has seriously
affected the performance of OCT image automatic analysis,
such as retinal lesion region segmentation [4], [5], retinal layer
information analysis [6]-[8] and registration [9]. Therefore,
obtaining high-quality OCT images is essential to improve
the performance of automatic analysis. Many hardware based
methods, which depend on specially designed acquisition
systems, have been proposed for speckle noise suppression
during imaging. Iftimia er al. [10] proposed a high-speed
method for implementing angular compounding by path length
encoding (ACPE) for reducing speckle noise in OCT images.
Kennedy et al. [11] presented a speckle reduction technique
for OCT based on strain compounding. Based on angular
compounding, Cheng et al. [12] proposed a dual-beam angular
compounding method to reduce speckle noise and improve
SNR of OCT images. However, these methods cannot be
directly applied to commercial OCT scanners because they
require specially designed acquisition systems. Recently, many
algorithms have been proposed for speckle noise denoising in
OCT images, which can be divided into two categories: tradi-
tional denoising algorithms and deep learning-based methods.
In traditional speckle reduction methods, the partial differential
equation (PDE) based methods such as anisotropic diffu-
sion filtering are widely used in noise reduction [13], [14].
However, these methods have problems of overfitting and
over-smoothing. Aum er al. [15] and Buades er al. [16]
explored the non-local mean (NLM) based speckle noise
denoising methods and achieved good performances both
in visual effects and objective indicators. Bo and Zhu [17]
proposed a wavelet modification based block matching and
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3D filtering (BM3D) for speckle noise denoising in human
finger skin OCT images. However, in the NLM-based method
when the local regions can’t be matched well, the edge
information may be lost. The methods based on statistical
model are also common for image denoising [18]. In addi-
tion, many sparse transform-based methods have achieved
good performance in noise reduction tasks, such as adaptive
wavelet thresholding [19], [20], curvelet transform [21], and
dictionary learning based sparse representation [22], [23].
However, these methods still have some problems such
as insufficient image feature representations, difficulties
in choosing appropriate thresholds and time-consuming
dictionary learning. Moreover, the low rank decomposi-
tion based methods are also effective for OCT image
denoising [24], [25].

In last decade, deep learning based methods, especially
convolutional neural networks(CNNs), have been widely used
in image classification [26], [27], object detection [28], [29],
and lesion region segmentation [30], [31]. Moreover, many
CNNs based methods have achieved promising performance
in image denoising as well. Mao et al. [32] proposed a very
deep convolutional encoder-decoder network with symmet-
ric skip connections for image restoration. Considering the
long-term dependency problem of the model, Tai et al. [33]
proposed a very deep persistent memory network (MemNet)
and applied to image restoration. Zhang et al. [34] proposed a
deep convolutional neural network based on residual learn-
ing (DnCNN) to suppress noise in natural images. Based
on DnCNN, Cai et al. [35] further improved the denoising
performance by introducing residual module and applied it to
OCT image denoising. However, these methods are mainly
used to reduce additive noise in images, which is quite
different from the speckle noise in OCT images. To improve
the performance of speckle noise reduction in OCT images,
in our previous work, we [36] proposed a novel convolutional
neural network named DeSpecNet, which combined residual
learning and batch normalization to improve the network by
using the shortcut connectivity blocks and leaky rectified
linear units. In another our previous work, we [37] pro-
posed an effectively method based on conditional generative
adversarial networks (cGAN) to reduce the speckle noise
in OCT images. Although these approaches have achieved
impressive performance, there are still two major problems
for CNNs-based method: (1) The fully-supervised method
based on deep learning usually requires a large amount of
labeled data, whose acquisition is usually time-consuming
or expensive. (2) To improve the denoising performance,
many CNNs-based methods have designed complex struc-
ture networks with a large number of parameters, which
tends to cause the overfitting and poor generality of the
networks.

In this article, to address these problems, we propose a novel
semi-supervised method based on our newly proposed capsule
conditional generative adversarial network called Caps-cGAN
for speckle noise denoising in retinal OCT images, which
can achieve outstanding denoising performance only using a
small amount of labeled data and network parameters. The key
contributions of this study are as follows:

(1) We propose a novel Caps-cGAN to develop a newly
semi-supervised learning method for denoising the speckle
noise, which can avoid the problem of a great increase in
the amount of parameters.

(2) To alleviate the problem of retinal structure information
loss in OCT images caused by the lack of detailed guidance
during unsupervised learning, a novel joint semi-supervised
loss function composed of unsupervised loss and supervised
loss is designed to optimize the proposed network.

(3) We validate the effectiveness and generality of our pro-
posed method by conducting comprehensive experiments on
OCT images acquired from different types of OCT scanners.
Results show that the proposed method outperforms the state-
of-the-art methods in OCT image speckle noise reduction
task.

[I. RELATED WORKS
A. Semi-Supervised Learning (SSL)

The lack of labeled data has always been one of the biggest
obstacles for applying CNNs-based methods to medical image
processing tasks. SSL can use unlabeled data to improve
the generalization performance of the supervised model [38].
To alleviate the dependence on labeled data, many SSL-based
methods have been proposed and applied to medical image
processing tasks, such as lesion region segmentation [38],
disease detection [39] and registration [40]. However, to our
best knowledge, there are no SSL-based methods for OCT
image denoising.

B. Capsule Networks

Capsule network was first proposed by Sabour et al. [41].
Its biggest characteristic is to adopt vector to represent
feature information, whose direction and amplitude indicate
the attributes of the feature, such as posture, texture, etc.
Therefore, the capsule network has better ability to cap-
ture the spatial relationship between features than standard
CNNs. However, due to the high cost of memory and time
consumption, the original capsule network was limited to
image with small size. To overcome this shortcoming, Rodney
and Bagci [42] extended the idea of convolutional capsules
and rewrote the dynamic routing algorithm, and successfully
applied the method to lung segmentation in CT image. Based
on [42], Bass et al. [43] introduced the convolutional capsule
network into the task of image synthesis. In addition, there
were two previous studies which improved GAN by intro-
ducing non-convolutional capsule in discriminator [44], [45].
But both of them were only applied to image with small
size 64 x 64.

Ill. METHODS
A. Overview

In this article, we propose a novel semi-supervised method
with small number of parameters for OCT image speckle noise
reduction, which can outperform the state-of-the-art supervised
approaches with less training data. Fig.l shows our newly
proposed semi-supervised learning system. Let’s assume a
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Fig. 1. Overview of the proposed semi-supervised system. D; and D, represent labeled data and unlabeled data, respectively.

total set of OCT images as Dy ={Dy, Dy }. Dp ={(xi, yi)}
and Dy ={x;} represent the labeled data and the unlabeled
data respectively, in which x; represents the original OCT
image, while y; is the corresponding ground truth of x;. As can
be seen from Fig.l, the proposed semi-supervised learning
based model is optimized as follows:

(1) Model initialization: the model is first trained based
on labeled data under the guidance of the fully-supervised
objective function, which aims to guide the model to
learn the distribution of labeled data and obtain the initial
weights.

(2) Mixed training: the model is continuously trained with
the initialized weights from step (1) using both a large amount
of unlabeled data and the small amount of labeled data. The
mixed training adopts the semi-supervised learning strategy,
which composes of supervised learning based on small amount
of labeled data and the un-supervised learning based on adver-
sarial guidance optimization for large amount of unlabeled
data.

(3) Refinement training: to avoid the mode crash caused
by the diversity distribution of the unlabeled data and fur-
ther improve the denosising performance, the model will be
refinedly trained based on the small amount of labeled data
again.

(4) Repeat the training process of (2) and (3) for several
epochs. Finally, a model which can generate high-quality OCT
images is obtained. Noting that the entire training process is
end-to-end.

B. Capsule Conditional Generative Adversarial Network

GAN and its variants have been widely used due to its
unique characteristics of adversarial game optimization, and
have made promising achievements in many image processing
tasks, such as image style transfer [46], target segmenta-
tion [30], [47], [48], and image manipulation [37], [49].
Different from the original GAN that generates image based
on random noise, the cGAN generates the image conditioned
on an observed image [37]. cGAN is mainly composed of
two modules: the generator G that aims to generate the
corresponding fake image based on the input image, and the
discriminator D is used to distinguish whether the image is
the real one or the generated one from G.

Generator: In the design of the cGAN generator, the most
commonly used structure is the U-shape convolutional neural
network [50]. The encoder of U-Net can gradually reduce
the spatial dimension of feature maps and capture the fea-
ture information, while the decoder path can recover spatial
dimension and features. Moreover, the skip connections are
embedded between the encoder path and the decoder path
to integrate downsampling feature with its corresponding
upsampling feature. Despite the CNNs-based generator has
shown remarkable flexibility and performance in many image
processing tasks, there are still some inherit flaws: (1) In the
standard CNNs, although a series of scalar values are used
to represent the feature information of each neuron which
make CNNs very good at detecting features, but the CNNs’
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Fig. 2. The structure of the generator in the proposed capsule conditional generative adversarial network.

ability of capturing spatial feature relationship (viewing angle,
size, direction) is insufficient.(2) Pooling operation in CNNs
can make the network position-invariant, which also prompts
CNNs to avoid overfitting. However, this invariance also
results in feature loss. (3) Many CNNs-based generators use
complex network structures with a large amount of parameters
to improve the complex and sparse feature extraction ability.
Although these approaches can improve the performance of
the network, they also cause the great increase of parameters
and increase the risk of overfitting.

To solve these problems, we propose a novel capsule
conditional generative adversarial network, referred as Caps-
c¢GAN, in which the generator is designed based on multi-scale
dynamic routing convolutional capsule as shown in Fig.2.
Different from standard CNNs-based methods, capsules output
vectors, whose direction represents attributes (e,g. posture,
texture, etc.) and makes the capsule represent the spatial
relationship between the features well [41], [42]. Moreover,
the other important component of the capsule network is an
iterative algorithm called “dynamic routing”, in which the
output of the capsule is routed to the capsule in the upper layer
based on the consistency of the prediction. As shown in Fig.2,
the architecture of the proposed generator is still based on
the U-shape encoder-decoder structure with skip connections.
To further improve the feature representation capacity of
the model, we introduce the shortcut connection and multi-
scale residual mechanism like ResNet [51] in Caps-cGAN
generator. As shown in Fig.2, the original OCT B-scans is
first fed into a convolutional layer to get feature maps, then
the feature maps are grouped into two capsules. The length of
all capsule vectors in this article is set to 16, which is referred
to [41] and [42]. The encoder path of the generator consists
of four multi-scale ConvCaps residual blocks, where each

block contains two ConvCaps residual layers. It has also been
demonstrated that multi-scale feature information can improve
the performance of feature extraction in [52]. Therefore,
we propose a novel multi-scale dynamic convolutional routing
to construct our convolutional capsule layer, which is shown
as Algorithm 1.

Algorithm 1 Multi-Scale Convolutional Dynamic Routing for
Multi-Scale ConvCap
RB.C.HW

Input: ¢ €
¢ < Reshape(p) € REXLLHW
oL, < Conv2d(¢) € REXILOXLHW) — 1 % |
01, < Conv2d(¢) € REXLOXLHWp =3 5 3 4 = |
¢0r5 < Conv2d(¢) € REXLOXLH W) =353 4 =3
Pps Conv2d(¢) € REXIOXLHWp — 3 %3 =5
0 =0k + 0o + 0k + 0l
¢! < Reshape(p!)e RE-LH.W.0.L
b < 0cRE-LHAW.0
for iter to r do:
for all capsules i in layer [ and capsule j in layer (I+ 1):
Ci,j < Softmax(bi,j)
for all capsules j in layer (I + 1): 5; < >; (ﬁfjj-c,-,j
for all capsules j in layer (/ 4+ 1): v; < squash(s;)
for all capsules i in layer [ and capsule j in layer (I + 1):
bij < bij+ ;v
end

Let’s denote the feature maps from the first convolu-
tional layer as ¢ € RB-C:H-W_ In the multi-scale ConvCap,
¢ is first reshaped to ¢ e REXLLHW and fed into a
multi-scale 2D convolution module to get new feature map

BxI,OxL,HW . . . . . .
gol € R with multi-scale information, which is

Authorized licensed use limited to: Soochow University. Downloaded on April 07,2021 at 07:15:01 UTC from IEEE Xplore. Restrictions apply.



1172

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 4, APRIL 2021

peRBXILHW

Feature maps

Conv3 X3
Dilation=1

Conv3 X3
Dilation=3

Conv3 X3

Convl X1 Dilation=5

iERB XLOXLHW

feature maps | ¢
Fig. 3. Multi-scale 2D convolution module. It consists of a conv 1 x 1
branch and three conv 3 x 3 branches, and the dilation rates of conv
3 x 3 branches are 1, 3 and 5. Hence the respective fields of conv 3 x 3

branch are 3, 7 and 9. The conv 1 x 1 branch is adopted to perform
feature compression and channel expansion.

shown in Fig.3. Then ¢! is reshaped to ¢!eRE--H:W.0.L B,

I, L, O, H and W represent the batch size, input capsules,
length of vectors, output capsules, feature map height and
width, respectively. Finally, ¢ is fed into the iterative vote
routing for r iterations to get the output capsules, where r is
set as 3. Initialize weight coefficient vector be RE-LH-W.0 ag
0, which is used to iteratively calculate the weight ¢ between
the parent and child capsules. The weight ¢; ; corresponding
to each children capsule and parent capsule is calculated by
softmax normalization:

o= exp (bijj)
Y Y by

where i, j represents the index for child and parent capsules
respectively. Softmax normalizes the weight coefficient b to ¢
to increase the votes of capsules with similar characteristics
and reduce the votes of capsules with dissimilar characteristics.
b j is updated in every routing iteration. The intermediate
vector v; is obtained by squash operation defined as Eq. (2):

)

Isil” s,
L+ sy | s

where s; denotes the output of capsule as follows:

sj= D ijci 3)
where “-” denotes dot production.

To effectively fuse the high-resolution and low-semantic
features in the lower layers of the network with the
high-semantic and low-resolution features in the upper layers,
we introduce capsule deconvolution module in the decoder
path to upsample the feature maps. The upsampled feature
vectors are added with the feature vectors in the lower layer
to perform feature fusion. Feature fusion by vector addition
can enhance the correlation of similar features and suppress
unrelated features. As shown in Fig. 4, taking vector @ and
b as example, if @ and b have similar features, the angle
between them will be small, and the features will be enhanced
by a+b (Fig. 4(a)). Otherwise the features will be suppressed
(Fig. 4(b)). The procedure of de-convolutional dynamic rout-
ing is shown in Algorithm 2.

2)

v; = squash(s;) =

e

atb

atb

(a) (b)

Fig. 4. Feature fusion by vector addition, where a and b indicate the
feature vectors. (a) Two vectors with similar features, the angle between
a and b will be small, and the features will be enhanced by a+b. (b) Two
feature vectors with different features, the angle between a and b will be
large, and the feature will be suppressed by a+b.

Input N s — Output
(True or fake pair) P!

Convd X 4, Convd X 4, Convd x4 Convd X 4,
Strude=2, Strude=2, Stride=1. Stride=1
Padding=2, Padding=2, Padding=2_ Padding=2,
Batchnorm, Batchnorm, Batchnorm, Batchnorm
LeakReLU LeakReLU LeakReLU LeakReLU

Convd X4
Stride=2,
Padding=2,
LeakReLU

Fig. 5. The architecture of the discriminator.

Discriminator: The discriminator of PatchGAN [53] is
adopted as our discriminator, which is shown in Fig.5. The
ordinary discriminator in GAN maps the input to a probability
value, that is to say, the probability of the input sample is a
real sample. In contrast, patchGAN tries to map the input to
an Nx N matrix X, where X is the output feature map of
the convolution layer. And the value of X;; represents the
probability whether each patch is a true sample. The mean
value of X;; is the final output of the discriminator. In our
discriminator, the size of patches can be much smaller than
the full size of the image, and its parameters are less than the
original discriminator. Therefore, it can be applied to images
of any size with higher computational efficiency.

Algorithm 2 De-Convolutional Dynamic Routing
JLL,HW

Input: ¢ € R®
¢ < Reshape(p) € REXLLHW
(ﬂl «— Transpose(g?)) € RBxI,OXL,2H.2W
(ﬁl «— Reshape((pl) e RB,I,ZH,ZW,O,L
b < 0 € RB.1.2H2W,0
for iter to r do:

for all capsules i in layer [ and capsule j in layer (I + 1):
Ci,j < Softmax(bi,j)

for all capsules j in layer (I + 1): 5; < >; (ﬁfjj-c,-,j

for all capsules j in layer (/ 4+ 1): v; < squash(s;)

for all capsules i in layer [ and capsule j in layer (I + 1):
bij < bij+ ;v
end

C. Loss Function

Given an input image X, the generator and discriminator are
denoted as G and D, respectively. The output of G is repre-
sented as G(X). In our proposed method, there are four kinds
of possible inputs to discriminator network D: input image
X concatenating ground truth, input image X concatenating
generator prediction G(X), ground truth concatenating ground
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truth, and generator prediction G(X) concatenating generator
prediction G(X).

Discriminator: The spatial binary cross entropy loss Lp as
follows is adopted to optimize the discriminator,

Lp==,  (=ylog (1-D (G (X)"*) +ylog(D(x)"*)
4)

where y = 0 if the sample is from generator prediction, and
y = 1 if the sample is from the ground truth. D (G (X))"?
denotes the probability map of G(X) at location (&, w), and
D(y)h’“’ is the probability map of y at location (&, w).

Generator: A multi-task loss L is employed to optimize
the generator as follows:

LG = Lagy +AL1 + BLssim ®)

where 1 and f are weights for minimizing the proposed
multi-task loss function and set as 100 and 10 respectively
in this article. L,4,, as defined in Eq.(6), is the loss that
discriminator recognizes the data from generator.

Laay = =2, 1og(D(G(X))"") (©6)

Previous studies have proven that it is beneficial to improv-
ing the performance of cGAN by mixing L; loss [34], which
can represent errors that are sparsely distributed in space.

1

N
Li==2 Iyi=GXal ™)

where N is the sample size. In addition, the retinal layer is one
of the most important structural information in retinal OCT
image, which should be reserved as possible during the image
denoising. To achieve this purpose, we introduce the structural
similarity (SSIM loss) into the loss function. SSIM is an index
that measures the similarity between two images from three
aspects including brightness, contrast and structure, defined as
follows:

(2ucaomy +c1) (2o6x)0y + 2)
(HGx) + uy +ci) (”é(x) +o2+ cz)

®)

Lssiy=1—

where c; and c; are constants to avoid system errors when the
denominator is 0. #G(x), #y and oG(x), oy are the means and
standard deviations of G(X) and y, respectively.

Objective Function for Few Labeled Data: In semi-
supervised learning, few labeled data is mainly adopted to
guide the model to learn the distribution of ground truth
and avoid the mode crash may be caused by the distribution
diversity of the large amount of unlabeled data. Therefore,
the loss function for training model based on labeled data is
defined as follows,

Lsuperuised =Ls+Lp )

Objective Function for Unlabeled Data: Since there is
no one-to-one ground truth for the unlabeled data, L; and
Lssiy can not be used to train the model, while L4,
is still applicable because it only requires the guidance of
discriminator network, that is, Lunsupervised = Lado-

The semi-supervised loss function is final defined as
follows:

Lgemi = Lsupervised + Lunsupervised (10)

D. Loss Function Application

As described in section of overview, our proposed semi-
supervised learning method is optimized by three important
steps: model initialization, mixed training and refinement
training.

1) Model Initialization: the supervised loss function
Lsupervisea is used to optimize the model based on the
labeled data, which aims to obtain the initial weights and
initially learn the distribution of the labeled data.

2) Mixed Training: in mixed training process, the model
is trained based on mixed data including labeled data and
unlabeled data. Therefore, Lg.;,; is adopted to optimize the
model.

3) Refinement Training: Mode collapse is a common
problem in generative adversarial models, especially in
semi-supervised learning based tasks which lack label guid-
ance. Therefore, to avoid the mode crash which may be caused
by the distribution diversity of the unlabeled data in mixed
training and further improve the denosising performance, the
model is refinedly trained based on the small amount of labeled
data using supervised loss function Lgypervised again.

E. Method Implementation

The implementation of our proposed denoising method is
based on the public platform Pytorch and NVIDIA GeForce
RTX 2080Ti GPU with 11GB memory. The Adam solver with
momentum 0.5 is applied to optimize our models. Besides,
we use the ‘poly’ learning rate policy, where learning rate
Ir = base_lr*(l—totgleriter)power, the initial learning rate
base_Ir is set to 2e-4 and the power is set to 0.9.The
batch size and total iteration epoch total_iter are set as
4 and 100, respectively. To be fair, all the supervised-based
methods use the same loss function Lgyperpised in our
experiments. The code of Caps-cGAN will be released:
https://github.com/wangmeng9218/Caps-cGAN.

IV. DATASET

The study is approved by the Institutional Review Board
of Soochow University, and informed consent was obtained
from all subjects. Based on the denoising ground truth acqui-
sition method proposed in [36] and [37], we developed the
labeled dataset Dy with 2 volumes (512 B-Scans), which were
acquired from Topcon Atlantis DRI-1 SS-OCT scanner (Top-
con, Tokyo, Japan) with center wavelength of 1050nm(256 B-
scans) and the Topcon OCT-2000 SD-OCT scanner (Topcon,
Tokyo, Japan) with center wavelength of 850nm (256 B-scans),
respectively. The flowchart for obtaining the denoising ground
truth of OCT B-scans is shown as Fig.6. First, repeat collecting
M 3D OCT volumes from the same normal eye. Then one of
the M volumes is randomly selected as the target volume, and
its B-scans are also used as the target B-scans. The rest of
NM-1 B-Scans surrounding the target B-scans are registered
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TABLE |
DETAILS ABOUT THE DATASET

Boscan si Center
Scanner “SCan SIZC | g ccans wavelength Location Normal/Pathological
(pixels)
(nm)
5, | Training Volume 1 Topeon DRI 519992 256 1050 Macula Normal
L
Training Volume 2 | Topcon 2000 512x885 256 840 Macula Normal
Testing Volume 1 512x992 256 1050 Macula Normal
- Topcon DRI-
Testing Volume 2 1 512x%992 256 1050 Macula+ONH Normal
Testing Volume 3 512x992 256 1050 Macula Pathological (CSC)
Testing Volume 4 Toncon 1000 512x480 64 840 Macula Normal
Dy Testing Volume 5 p 512x480 64 840 Macula Pathological (CSC)
Testing Volume 6 T 12000 512x885 128 840 Macula Normal
Testing Volume 7 | = P°° 512x885 128 840 ONH Normal
Testing Volume 8 Zeiss Cirrus 512x1024 128 840 Macula Pathological (PM)
Testing Volume 9 4000 512x1024 128 840 Macula Pathological (CSC)

Fig. 6. The flowchart for obtaining the denoising ground truth of OCT
B-scans.

with the target B-Scan. Finally, L B-scans with the highest
SSIM scores from the NM-1 registered B-scans are selected
and averaged with the target B-scan to obtain the ground truth
corresponding to the target B-scan.

In additional, 9 retinal OCT volumes consisting of 1408
B-scans from four different types of OCT scanners were col-
lected as the unlabeled dataset Dy, which were also adopted
to assess the performance of our proposed method. Details
about the data are listed in TABLE 1.

V. EXPERIMENT

As shown in TABLE I, we have 512 B-scans with ground
truth, which were acquired from two Topcon OCT scanners
with different acquisition modes. In addition, we divide 9 test
volumes without ground truth into 2 folds to perform cross-

validation, one includes 768 B-Scans (Testing Volume 1-3)
and the other includes 640B-Scans (Testing Volume 4-9).
To prove the effectiveness and generality of our proposed
semi-supervised method, we conduct experiments using five
data strategies, as listed in TABLE II. The experimental
results are qualitatively and quantitatively analyzed. Besides,
we also conduct experiments to compare the performance of
the proposed method with other state-of-the-art algorithms,
in which all supervised CNNs-based methods are trained based
on Strategyl. The same data preprocessing method is adopted
in all experiments to ensure the fairness. Data augmentation is
one of the effective strategies to increase the diversity of data
distribution and alleviate the problem of overfitting. In this
article, flipping and distortion are applied to augment the data
to improve the algorithm performance with a factor of 2.

A. Evaluation Metrics

To evaluate the despeckle performance of different methods,
four indicators including signal-to-noise ratio(SNR), contrast-
to-noise ratio(CNR), equivalent number of looks(ENL) and
edge preservation index(EPI) are adopted to quantitatively
analyze the experimental results [20], [56], [57]. The region
of interests (ROIs) including one background ROI and three
signal ROIs are manually selected to calculate the index in
each test image. As shown in Fig.7, the background ROI
and signal ROIs are marked with green and red rectangles,
respectively. Three signal ROIs are selected which are located
in the retinal nerve fiber layer (RNFL), inner retina and the
retinal pigment epithelium (RPE) complex respectively, with
important structural information of retina. In addition, three
boundaries represented by blue curves in Fig.7 including the
upper boundary of RNFL, inner-outer retina boundary and the
lower boundary of RPE are selected for calculating EPI. These
four indicators are calculated as follows:

I 2
SNR = 101og10(%) a1
o

b
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Strategy Fold Data Data Distribution
Strategy 1 Training Data 512 labeled B-Scans from training volumes 1~2.
Testing Data 1408 B-Scans from testing volumes 1~9.
Training Data 25§ l.abeled B-Scans only from training volume 1, 256+768 unlabeled B-Scans from
1% fold training volume 2 and testing volumes 1~3.
Strategy 2 Testing Data 640 B-Scans from testing Volumes. 4.~9.
Training Data 25§ l.abeled B-Scans only from training volume 1, 256+640 unlabeled B-Scans from
2" fold training volume 2 and testing volumes 4~9.
Testing Data 768 B-Scans from testing volumes 1~3.
Training Data 25§ l.abeled B-Scans only from training volume 2, 256+768 unlabeled B-Scans from
1% fold training volume 1 and testing volumes 1~3.
Strategy 3 Testing Data 640 B-Scans from testing Volumes' 4.~9.
Training Data 25§ l.abeled B-Scans only ﬁom training volume 2, 256+640 unlabeled B-Scans from
2" fold training volume 2 and testing volumes 4~9.
Testing Data 768 B-Scans from testing volumes 1~3.
Training Data 512 .labeled B-Scans from training volumes 1~2, 768 unlabeled B-Scans from
1% fold training volume 1 and testing volumes 1~3.
Strategy 4 Testing Data 640 B-Scans from testing Volume§ 4~9.
Training Data 512 .labeled B-Scans from training volumes 1~2, 640 unlabeled B-Scans from
2" fold training volume 1 and testing volumes 4~9.
Testing Data 768 B-Scans from testing volumes 1~3.
Training Data 256 labeled B-Scans only from training volume 2.
Strategy 5 Testing Data 256 B-Scans with ground truth from training volume 1 and 1408 B-Scans from testing
volumes 1~9.
lui — pupl To further evaluate the performance of our proposed
CNR; = 10logyg T (12) method, one example of denoising results with different meth-
Voi o ods are shown in Fig.8, in which the proposed method is based
/‘1‘2 on strategy 4. It can be seen that BM3D, K-SVD and NLM
ENL; = 52 (13) " do not remove noise completely, which cause artifacts inside
Zi:h S Mg b+ 1, w) — Iy (h, w)| the retinal layers and .I‘f?Slllt in adhf:sion between layers: The
EPI = (14) layer edge of the denoising result with the MAP method is not

2on 2w o (h+ 1, w) = I, (h, w)

where u; and o, represent the mean and standard deviation
of background region. x; and o; are the mean and standard
deviation of i-th ( = 1,2,3,...) signal region. I, and
I; denote the original image and denoised image. max(/)
is the maximum intensity value of the B-scan /. h and
w are coordinates in height and width direction of image,
respectively.

B. Qualitative Evaluation

Fig.7 shows the denoising results of B-scans corresponding
to 9 testing volumes listed in Table I. These results are
obtained by the proposed method based on strategy 4. It can
be seen from Fig.7 that the proposed semi-supervised method
performs well for all test volumes, the speckle noise in
different areas is eliminated while the retinal layer structures
and choroidal vessels are preserved and enhanced well. It can
also be seen that although the training data is collected in
the macula-centered mode without any lesions, the proposed
method still works well in other collection modes (Fig.7(b) and
Fig.7(d)) and the abnormal OCT B-scans (Fig.7(a), Fig.7(f),
Fig.7(h) and Fig.7(i)). These results demonstrate the effective-
ness and generality of our proposed method.

smooth enough (Fig.8(e)), and there are still artifacts between
the layers (Fig.8(e)). Although STROLLR-2D [54] can remove
speckle noise well, the insufficient enhancement of the retina’s
layer structure results in the blurring of boundary between
layers. DnCNN performs poorly on both test data (Fig.8(g)),
which does not suppress speckle noise well and also causes
the blurring of the retinal layer structures. The edges of retinal
layers are distorted in the results of ResNet and cGAN and
the external limiting membrane (ELM) is not enhanced well in
the results of cGAN (Fig.8(i)). Compared with these methods,
our proposed method removes speckle noise well and enhances
the retinal layer information with clear layer boundaries, which
proves the effectiveness of the proposed method (Fig.8(j)).

C. Quantitative Evaluation

To quantitatively evaluate the despeckling performance, four
metrics including SNR, CNR, ENL and EPI of different
methods listed in TABLE III.

The performances of some typical traditional methods are
shown in upper part of TABLE III. The SNR of BM3D is
low, which may be caused by its poor performance in speckle
noise suppression. K-SVD has good indicators except the EPI,
which may be caused by the blurred edges. Instead, NLM
has the highest EPI and the lowest CNR and ENL, which
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Fig. 7. The denoising results of B-scans from 9 testing volumes. For each panel, left: original B-scan, right: denoised B-scan. The green rectangle,
red rectangles and blue curves represent the background ROI, signal ROIs and boundaries for calculating EPI, respectively.

may be caused by artifacts near the edges. All indicators of
MAP except ENL are the low, especially SNR, which has
great correlation with background noise. Similar to K-SVD,
STROLLR has high CNR, SNR and ENL and low EPI. The
middle part of TABLE III lists the quantitative performances
of some state-of-art deep learning-based methods including
DnCNN, ResNet, cGAN and Cycle-GAN. Compared with
other deep learning-based methods, ResNet obtains the lowest
indicators except for EPI. On the contrary, DnCNN obtains the
lowest EPI. Due to the weakly supervised learning strategy,
the indicators of Cycle-GAN [55] (except CNR) are lower
than those of cGAN, especially EPI, which is mainly caused
by the lack of one-to-one label guidance and in turn leads
to the loss of retinal structural information. cGAN obtains
quite balanced indices, which are still lower than those of the
proposed semi-supervised Caps-cGAN. With the same training
data, our proposed semi-supervised Caps-cGAN achieves the
best SNR, CNR and ENL compared with other CNNs-based
methods.

TABLE III also shows the indicators of the proposed super-
vised Caps-cGAN, which is trained using the same Strategy
(Strategy 1 in TABLE II) and the same supervised loss
function (Eq.(9)) with cGAN. It can be seen from TABLE III
that compared with cGAN, the SNR, CNR, ENL and EPI
of the proposed supervised Caps-cGAN have increased by
21.21%, 14.45%, 158.62% and 3.06%, respectively. These
results show that the proposed Caps-cGAN can achieve better
denoising performance than cGAN with standard CNNs. Due
to its generator with 3 residual blocks, the parameter number
of ¢cGAN is 276.69M, while the proposed Caps-cGAN only
has 5.31M. That is to say, the proposed Caps-cGAN can obtain
better performances than cGAN with fewer parameters.

In addition, we also compare the denoising efficiency of
different methods. Since the traditional denoising algorithms
are executed on CPU, it results in the low efficiency. On the
contrary, deep learning-based methods can be accelerated by
GPU accelerator, which greatly improves the efficiency. It can
be seen from TABLE III that our proposed method takes
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Fig. 8.  One example of denoising results with different methods. (a) Original image (b) BM3D (c) K-SVD (d) NLM (e) MAP (f) STROLLR-2D
(g) DNCNN (h) ResNet (i) cGAN (j) Proposed.
TABLE Il
QUALITATIVE EVALUATION RESULTS OF DIFFERENT METHODS
Strategy Learning Method SNR CNR ENL EPI Times(s)
method
BM3D [17] 34.80+1.76 8.36+0.80 111.154+46.15 0.81+0.10 176.393
K-SVD [20] 50.07£2.12 9.24+1.87 260.584+326.15 0.79+0.13 136.728
NLM [16] 44.56+2.88 6.11+1.44 63.56+43.67 1.04+0.09 0.155
MAP [18] 31.73+0.73 7.33£1.28 128.44+54.76 0.75+0.09 0.361
Strategy 1 Supervised STROLLR [54] 41.86+2.09 8.18+1.41 123.91+98.29 0.80+0.09 196.342
DnCNN [34] 42.38+6.72 9.26+3.26 153.17+£57.35 0.83+0.13 0.0710
ResNet [35] 35.76+3.57 9.01+1.39 141.44+79.61 0.97+0.11 0.0919
Cycle-GAN[55] 46.56+2.59 9.97+0.80 138.55+55.41 0.91+0.15 0.0302
c¢GAN [51] 47.39+£3.61 9.69+1.04 139.43+63.22 0.98+0.10 0.0464
Caps-cGAN 57.44+9.94 11.09+1.20 360.59+317.40 1.01+0.18
Strategy 2 Semi- 56.02+9.55 10.72+1.05 264.69+179.33 1.03+£0.19 0.0951
Strategy 3 Supervised Caps-cGAN 56.21+7.47 11.07+1.06 304.46+200.76 1.00+0.17 '
Strategy 4 59.01+9.41 11.37+1.21 417.22+350.28 1.03+0.17

slightly longer time than other deep learning-based methods
due to the introduction of vector and matrix operations in
the capsule network. However, it can still meet the require-
ment of real-time processing. In summary, except that the
EPI index is comparative to that of NLM, other indexes
of the proposed Caps-cGAN have been greatly improved,
which show the effectiveness and generality of the proposed
Caps-cGAN.

In order to prove the advantage of the proposed semi-
supervised learning strategy, we independently train the model
using Strategy 2 and Strategy 3 with 256 labeled data and
256-+768/640 unlabeled data. It can be seen from TABLE III
that the indicators of the both semi-supervision trained models

are higher than the other state-of-the-art approaches which are
trained based on 512 labeled data. The result shows that the
proposed semi-supervised Caps-cGAN can leverage less data
to obtain comparable denoising performance.

It also can be seen from TABLE III that our proposed
semi-supervised Caps-cGAN has achieved better performance
than the supervision-based Caps-cGAN. The SNR, CNR, ENL
and EPI of our proposed semi-supervised Caps-cGAN have
been improved to 59.01, 11.37, 417.22 and 1.03 from 57.44,
11.09, 360.59 and 1.01, respectively. These results show that
the unlabeled data is beneficial to improve the denoising
performance and further demonstrate the effectiveness of the
proposed semi-supervised method.
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Fig. 9. Results of ablation experiments. (a) Original B-scan image (b) Caps-cGAN with original cGAN loss (c) Caps-cGAN+L1 (d) Caps-cGAN+SSIM
(e) Single-Scale ConvCap (f) Multi-Scale ConvCap without residual (g) Proposed without refinement (h) Proposed.

TABLE IV
QUALITATIVE EVALUATION RESULTS OF DIFFERENT LOSS FUNCTIONS

Strategy Methods SNR CNR ENL EPI
Caps-cGAN 54.50+5.38 10.77£1.17 227.88+£127.03 1.00+0.18
Strategy 4 Caps-cGAN+L1 51.1845.23 11.16+0.83 293.01+124.04 0.97+0.19
Caps-cGAN+SSIM 56.89+8.85 10.93+1.22 264.60+162.43 1.02+0.18
Proposed 59.01+9.41 11.37+1.21 417.22+350.28 1.03+0.17

D. Ablation Experiment

To evaluate the contribution of the loss functions adopted
in the proposed semi-supervised Caps-cGAN, four ablation
experiments about original cGAN loss, original + L1 loss,
original + SSIM loss and the proposed original + L1 4+SSIM
loss are performed with the same training Strategy 4. Fig.9(a)-
(d) and (h) show the original B-scan and the corresponding
denoising results with different loss functions and TABLE IV
shows the corresponding quantitative evaluation results. It can
be seen from TABLE IV that compared with the Caps-cGAN
based on the original cGAN loss, the introduction of L1 loss
can improve CNR and ENL and slightly reduce SNR and EPI,
which may because that L1 loss improves the smoothness
of the uniform area in the retinal layer and causes a slight
blur simultaneously (as shown in the red rectangle area in
Fig.9(b) and Fig.9(c)). On the contrary, all indicators of Caps-
cGAN+SSIM (as shown in Fig.9(d)) have been improved
because SSIM loss can introduce structural information of the
retina during model training. Compared with the above two
results, the result of Caps-cGAN trained using the proposed
loss function (Eq. 10) not only improves the objective indexes

(shown in TABLE IV), but also keeps the retinal layer structure
clearer and smoother (as shown in the red rectangle area in
Fig.9(h)).

The effectiveness of the proposed network architecture is
also verified. Fig.9(e)-(g) show the denoising results with dif-
ferent network architectures and the corresponding quantitative
evaluation results are shown in TABLE V. As can be seen
from Fig.9(e) and Fig.9(f), the areas between the inner and
outer boundaries of the retina and RPE suffers from blurred
layer structure, but the proposed method obtains a clearer
and smoother retinal layer structure in this region (Fig.9(h)).
As shown in TABLE V, compared the Caps-cGAN based
on single-scale ConvCaps that proposed in [42], the SNR,
CNR, ENL and EPI of the proposed method have increased by
19.82%, 8.18%, 83.89% and 5.10%, respectively. Compared
with the multi-scale Caps-cGAN without residual structure,
the SNR, CNR, ENL and EPI of the proposed method have
increased by 18.90%, 9.22%, 62.04% and 13.19%, respec-
tively. It can be seen from Fig.9(g) and (h) and TABLE V
that compared with the result of Caps-cGAN without refine-
ment training, the proposed method gets slightly smoother
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Fig. 10. Expanded experimental results from different methods. (a) Originalimage (b) BM3D (c) K-SVD (d) NLM (e) MAP (f) STROLLR-2D (g) DnCNN

(h) ResNet (i) Cycle-GAN (j) cGAN (k) Caps-cGAN (I) Ground truth.

layer structure and better continuity, and the corresponding
SNR, CNR, ENL and EPI have increased by 1.2%, 0.4%,
16.55% and 4.04%, respectively. These results demonstrate the
rationality and effectiveness of the proposed network structure
design.

E. Extended Experiment

Based on Strategy 5 listed in TABLE 11, an extended exper-
iment is performed to further demonstrate the effectiveness
and generality of the proposed Caps-cGAN. The multi-scale-
structural similarity index (Ms-SSIM) indicator is introduced
to analyze the structural similarity between the result and the
ground truth, which is the multi-scale score of SSIM.

Ms — SSIM = [LM(X, Y)]aM
M
B
<10 1c e s, x. v as)

2uxpy + Cy

L(X,y) = XY T oL (16)
uy +uy +Ci
20x0y + Co

c(X,y)= X2 (17)
ox +oy+C

C

S(X,Y) = oxy +C3 (18)

oxoy + C3

where X and Y represent the denoised image and ground
truth, respectively. L(X, Y) is the brightness contrast factor,
C(X,Y) is the contrast factor, and S(X,Y) is the structural
contrast factor. uy, uy and ox, oy denote the mean and
standard deviations of X and Y. The constants C{, C and
C3 are small values for numerical stability. M represents the
number of scales. The ratio J indicates that the original image
is down-sampled by a factor of 2/, ays, £ and y; are used
to adjust the relative importances of the components. In this
article, referring to [58], M = 5, a1 = f1 = y1 = 0.0448,

Authorized licensed use limited to: Soochow University. Downloaded on April 07,2021 at 07:15:01 UTC from IEEE Xplore. Restrictions apply.



1180 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 40, NO. 4, APRIL 2021
TABLE V
QUALITATIVE EVALUATION RESULTS OF DIFFERENT NETWORK ARCHITECTURES
Strategy Methods SNR CNR ENL EPI
Caps-cGAN
. 2542, S+l .89+157. .98+0.
(Single-Scale ConvCap[42]) 49.25+2.48 10.51£1.15 226.89+157.08 0.98+0.17
Caps-cGAN
Strategy 4 (Multi-Scale ConvCap Without 49.63+2.80 10.41£1.08 257.48+179.89 0.91+0.18
Residual)
Proposed without Refinement Training 58.3049.92 11.32+1.06 357.98+£279.99 0.99+0.17
Proposed 59.01+9.41 11.37+1.21 417.22+350.28 1.03+0.17
) ) L ) Fig. 12.  SRF and CNV joint segmentation results. (a) Original image
Fig. 11. Layer segmentation results. (a) Original image (b) Denoised

image (c) The segmentation result of originalimage (d) The segmentation
result of denoised image (e) Ground truth. Blue and red regions represent
inner and outer retinal layer respectively.

oy = Pr = y2 = 02856, a3 = f3 = y3 = 0.3001,
o4 = fa = y4 = 0.2363,a5 = f5 = y5 = 0.1333. Fig.10
shows one example of denoising results of different methods.
The quantitative indicators are listed in TABLE VI, where
SNR, CNR, ENL and EPI are calculated based on 9 test sets
without ground truth and training volume 1 with ground truth,
while Ms-SSIM is calculated based on training volumel as it
requires ground truth.

It can be seen from Fig.10 and TABLE VI that compared
with traditional typical denoising methods, such as BM3D,
K-SVD, NLM, MAP, STROLLR, our proposed Caps-cGAN
can suppress speckle noise more obviously, and the retina layer
structure information has also been well enhanced. Although
DnCNN has obtained the highest ENL index, the view of its
denoised image (Fig.10(g)) is blurry and the layer information
is not clear, which leads to lower EPI. The SNR, CNR
and ENL of DnCNN associated with the speckle noise are
improved because Strategy 5 adds training set 1 (from Topcon)
into the test data, whose feature distribution is similar to
the training set 2. However, its EPI and Ms-SSIM related
to the retinal structure information are low, which may be
caused by its poor retinal structure enhancement (shown as
Fig.10(g)). Compared with DnCNN and ResNet, Cycle-GAN
and cGAN can not only remove the speckle noise well, but also

(b) Denoised image (c) The segmentation result of original image (d) The
segmentation result of denoised image (e) Ground truth. Red and blue
regions represent CNV and SRF respectively.

enhance the contrast and detail information of retina. As shown
in Fig.10 and TABLE VI, compared with other denoising
methods, our proposed Caps-cGAN has obtained better view
of denoised image and higher SNR, CNR, EPI and Ms-SSIM
indicators. It can be seen from Fig.10 that the retina structure
information of denoised image with our proposed Caps-cGAN
has been enhanced, especially for retina layer structure and
choroidal vessels. The proposed Caps-cGAN has obtained the
highest Ms-SSIM compared with other methods. These results
further demonstrate the effectiveness and generality of our
proposed Caps-cGAN in the task of removing speckle noise
in retinal OCT images.

F. Application in Retinal Image Segmentation

To verify that the proposed denoising algorithm can facil-
itate image analysis, two experiments including retinal layer
segmentation and joint segmentation of choroidal neovascular-
ization (CNV) and sub-retinal fluid (SRF) are conducted. The
corresponding segmentation results and Dice coefficient (DSC)
are shown in Fig.11, Fig.12 and TABLE VII, respectively. The
commonly used medical image segmentation network U-Net
is adopted as the segmentation network. The training strate-
gies and platform settings are consistent in all comparison
experiments.
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Fig. 13. Vector reconstruction results. (a) Original image (b) Denoised image (c-r) The reconstruction results of each dimension in vector.

1) Retinal Layer Segmentation: 2054 retinal OCT B-scan
images were acquired from different OCT scanners and
acquisition modes. The inner retinal layer and outer retinal
layer were manually labeled as the ground truth under the
supervision of the senior ophthalmologist. The data were
randomly split into training set and test set according to the
ratio of 4:1. As can be seen from Fig. 11 and TABLE VII, the
layer structure information of the denoised image is clearer
than the original image and the segmentation accuracy of the
denoised image is higher than that of the original image, which
proves the effectiveness of the proposed denoising method and
is conducive to improve the layer segmentation performance.

2) Joint Segmentation of CNV and SRF: 1024 OCT B-cans
from 6 eyes with CNV and SRF were included in this
experiment. The CNV and SRF ground truth were manually
labeled by two ophthalmologists independently. As shown in

Fig.12 and TABLE VII, the segmentation performances with
denoised data are better than those with original data, which
indicates that the proposed denoising method is beneficial for
disease region segmentation.

G. Vector Feature Analysis

To further explain why the proposed method works well
in the OCT image denoising task, the feature responses of
each dimension vector in the last capsule are reconstructed
and shown in Fig.13, where Fig. 13(a) and Fig. 13(b) are the
original noisy image and the denoised B-Scans, respectively.
Fig. 13(c-r) denote the reconstructed results of each vector
feature in the last capsule, which shows that the vector value of
each dimension in the capsule focuses on different features in
the OCT image. Fig. 13(c), Fig. 13(e), Fig. 13(f) and Fig. 13(j)
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TABLE VI
THE EXPANDED EXPERIMENTS RESULTS OF DIFFERENT METHODS

Strategy Methods SNR CNR ENL EPI Ms-SSIM

BM3D [17] 35.824+3.27 8.48+0.61 151.48+51.66 0.81+0.08 0.85+0.002

K-SVD [20] 39.09+2.94 7.72+1.24 113.954+85.56 0.80+0.10 0.85+0.003

NLM [16] 44.93+2.96 6.24+1.42 70.70+46.65 1.03+0.09 0.87+0.003

MAP [18] 31.77+1.26 7.27+2.01 126.48+46.67 0.77+0.11 0.85+0.003

Strategy 5 STROLLR [54] 42.16+2.18 8.29+1.38 153.07+127.86 0.78+0.11 0.87+0.003

DnCNN [34] 45.24+7.34 10.22+1.24 332.86+185.67 0.79+0.17 0.87+0.003

ResNet [35] 36.40+4.66 8.92+1.39 166.04+£120.69 0.94+0.15 0.87+0.003

Cycle-GAN[55] 47.92+2.26 9.80+0.81 123.35+42.25 0.96+0.19 0.85+0.006

cGAN [51] 46.90+4.75 10.52+0.95 174.40+66.89 1.01+0.16 0.91+0.011

Caps-cGAN 56.79+8.37 10.68+1.26 233.07+141.34 1.06+0.21 0.98+0.001
TABLE VII obtains the best visual quality and higher objective indexes.
THE DICE COEFFICIENT OF SEGMENTATION (%) The proposed semi-supervised method is suitable for retinal
— : OCT images collected from different types of OCT devices

Tasks Target Original | Denoised and different scanning modes well.
i Inner 96.75 97.02 There is still a limitation in this study that the model was
retinal layer . .

Layer Outer trained only using the data from normal eyes, because the
Segmentation retinal layer 93.35 94.22 registration and average method for the ground truth acqui-
Mean 9505 95.62 sition is not applicable for the image with lesions. Although
Joint SRF 76.78 78.16 the proposed method has achieved promising generality on
Segmentation of CNV 69.37 70.00 pathological data, we believe that if some data with lesions can
CNV and SRF Mean 73.08 74.08 be added into the training set, the performance of the proposed

characterize different main foreground features in OCT image,
such as retinal layer edge, contrast and smoothness, etc.
In contrast, Fig. 13(d), Fig. 13(g), Fig. 13(i), Fig. 13(p) and
Fig. 13(q) learn diverse background features, especially in
the Fig. 13(i) and Fig. 13(p), the background noise near the
foreground edge of the retina is well represented. These results
also explain why our results have high SNR, CNR and ENL.
In addition, Fig. 13(h), Fig. 13(j), Fig. 13(m), Fig. 13(n),
Fig. 13(o0) and Fig. 13(r) capture different structural features
of retina respectively, such as layer structure and choroidal
vessels, etc. In Fig. 13(h), Fig. 13(m) and Fig. 13(r), the layer
structure properties such as contrast, thickness, layer spacing
and smoothness can be clearly observed, which result in the
high EPI.

VI. CONCLUSION AND DISCUSSION

In this article, we propose a novel semi-supervision based
method for speckle noise reduction in retinal OCT images.
It is the first time to introduce the capsule network into
the task of retinal OCT image denoising and achieve out-
performing results. Unlike the previous CNNs-based meth-
ods, which improve the denoising performance via com-
plex network structure and numerous parameters, our newly
proposed Caps-cGAN can learn the feature information of
the retinal OCT images via very few parameters. In addi-
tion, our proposed semi-supervision based network can get
better performances with fewer training data than the fully
supervision based networks. Comprehensive experiments are
also conducted to evaluate the effectiveness and generality of
the proposed method, which show that compared with other
state-of-art algorithms, our proposed semi-supervised method

method will be further improved. Therefore, it is one of our
future research tasks to explore the ground truth acquisition
method that can be applied to pathological data. Besides, how
to further improve the efficiency of matrix operations in the
capsule network is another focus that will be continuously
explored in future work.

REFERENCES

[1] D. Huang et al., “Optical coherence tomography,” Science, vol. 254,
no. 5035, pp. 1178-1181, 1991.

[2] S. Zhu, F. Shi, D. Xiang, W. Zhu, H. Chen, and X. Chen, “Choroid
neovascularization growth prediction with treatment based on reaction-
diffusion model in 3-D OCT images,” IEEE J. Biomed. Health Informat.,
vol. 21, no. 6, pp. 1667-1674, Nov. 2017.

[3] W. Zhu et al., “Automatic three-dimensional detection of photoreceptor
ellipsoid zone disruption caused by trauma in the OCT,” Sci. Rep., vol. 6,
no. 1, p. 25433, May 2016.

[4] Y. Rong et al., “Deriving external forces via convolutional neural net-
works for biomedical image segmentation,” Biomed. Opt. Exp., vol. 10,
no. 8, pp. 3800-3814, 2019.

[5] W.Zhu et al., “An automated framework for intra-retinal cystoid macular
edema segmentation in 3D-OCT images with macular hole,” J. Biomed.
Opt., vol. 22, no. 7, 2017, Art. no. 076014.

[6] K. Yu, F. Shi, E. Gao, W. Zhu, H. Chen, and X. Chen, “Shared-hole
graph search with adaptive constraints for 3D optic nerve head optical
coherence tomography image segmentation,” Biomed. Opt. Exp., vol. 9,
no. 3, pp. 962-983, 2018.

[7]1 D. Xiang et al., “Automatic segmentation of retinal layer in OCT images
with choroidal neovascularization,” IEEE Trans. Image Process., vol. 27,
no. 12, pp. 5880-5891, Dec. 2018.

[8] D. Xiang et al., “Automatic retinal layer segmentation of OCT images
with central serous retinopathy,” IEEE J. Biomed. Health Informat.,
vol. 23, no. 1, pp. 283-295, Jan. 2019.

[9] L. Pan, L. Guan, and X. Chen, “Segmentation guided registration for 3D

spectral-domain optical coherence tomography images,” IEEE Access,

vol. 7, pp. 138833-138845, 2019.

N. Iftimia, B. E. Bouma, and G. J. Tearney, “Speckle reduction in optical

coherence tomography by ‘path length encoded’ angular compounding,”

J. Biomed. Opt., vol. 8, no. 2, p. 260, 2003.

B. F. Kennedy et al., “Speckle reduction in optical coherence tomogra-

phy by strain compounding,” Opt. Lett., vol. 35, no. 14, pp. 2445-2447,

2010.

[10]

(1]

Authorized licensed use limited to: Soochow University. Downloaded on April 07,2021 at 07:15:01 UTC from IEEE Xplore. Restrictions apply.



WANG et al.: SEMI-SUPERVISED Caps-cGAN FOR SPECKLE NOISE REDUCTION IN RETINAL OCT IMAGES

1183

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

(32]

[33]

[34]

W. Cheng, J. Qian, Z. Cao, X. Chen, and J. Mo, “Dual-beam angular
compounding for speckle reduction in optical coherence tomography,”
Proc. SPIE, vol. 10053, Feb. 2017, Art. no. 100532Z.

H. M. Salinas and D. C. Fernandez, “Comparison of PDE-based non-
linear diffusion approaches for image enhancement and denoising in
optical coherence tomography,” IEEE Trans. Med. Imag., vol. 26, no. 6,
pp. 761-771, Jun. 2007.

P. Puvanathasan and K. Bizheva, “Interval type-II fuzzy anisotropic
diffusion algorithm for speckle noise reduction in optical coherence
tomography images,” Opt. Exp., vol. 17, no. 2, pp. 733-746, Jan. 2009.
J. Aum, J. Kim, and J. Jeong, “Effective speckle noise suppression in
optical coherence tomography images using nonlocal means denoising
filter with double Gaussian anisotropic kernels,” Appl. Opt., vol. 54,
no. 13, pp. 13-14, 2015.

A. Buades, B. Coll, and J.-M. Morel, “A non-local algorithm for image
denoising,” in Proc. IEEE Comput. Soc. Conf. Comput. Vis. Pattern
Recognit. (CVPR), Jun. 2005, pp. 60-65.

B. Chong and Y.-K. Zhu, “Speckle reduction in optical coherence
tomography images of human finger skin by wavelet modified BM3D
filter,” Opt. Commun., vol. 291, pp. 461-469, Mar. 2013.

M. Li, R. Idoughi, B. Choudhury, and W. Heidrich, “Statistical model for
OCT image denoising,” Biomed. Opt. Exp., vol. 8, no. 9, pp. 3903-3917,
2017.

F. Zaki, Y. Wang, H. Su, X. Yuan, and X. Liu, “Noise adaptive
wavelet thresholding for speckle noise removal in optical coherence
tomography,” Biomed. Opt. Exp., vol. 8, no. 5, pp. 2720-2731, 2017.
R. Kafieh, H. Rabbani, and I. Selesnick, “Three dimensional data-driven
multi scale atomic representation of optical coherence tomography,”
IEEE Trans. Med. Imag., vol. 34, no. 5, pp. 1042-1062, May 2015.

Z. Jian, L. Yu, B. Rao, B. J. Tromberg, and Z. Chen, “Three-dimensional
speckle suppression in optical coherence tomography based on the
curvelet transform,” Opt. Exp., vol. 18, no. 2, pp. 1024-1032, Jan. 2010.
L. Fang, S. Li, Q. Nie, J. A. Izatt, C. A. Toth, and S. Farsiu, “Spar-
sity based denoising of spectral domain optical coherence tomography
images,” Biomed. Opt. Exp., vol. 3, no. 5, pp. 927-942, May 2012.

L. Fang, S. Li, D. Cunefare, and S. Farsiu, “Segmentation based sparse
reconstruction of optical coherence tomography images,” IEEE Trans.
Med. Imag., vol. 36, no. 2, pp. 407421, Feb. 2017.

I. Kopriva, F. Shi, and X. Chen, “Enhanced low-rank + sparsity
decomposition for speckle reduction in optical coherence tomography,”
J. Biomed. Opt., vol. 21, no. 7, Jul. 2016, Art. no. 076008.

J. Cheng et al., “Speckle reduction in 3D optical coherence tomography
of retina by A-Scan reconstruction,” IEEE Trans. Med. Imag., vol. 35,
no. 10, pp. 2270-2279, Oct. 2016.

X. Guo and Y. Yuan, “Triple ANet: Adaptive abnormal-aware attention
network for WCE image classification,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2019,
pp. 293-301.

Q. Wang, Y. Zheng, G. Yang, W. Jin, X. Chen, and Y. Yin, “Multiscale
rotation-invariant convolutional neural networks for lung texture classifi-
cation,” [EEE J. Biomed. Health Informat., vol. 22, no. 1, pp. 184-195,
Jan. 2018.

J. Hayashida and R. Bise, “Cell tracking with deep learning for cell
detection and motion estimation in low-frame-rate,” in Proc. Int. Conf.
Med. Image Comput. Comput.-Assist. Intervent. Cham, Switzerland:
Springer, 2019, pp. 397-405.

H. Tian, G. Chen, D. Xiang, and X. Chen, “Simultaneous and auto-
matic two surface detection of renal cortex in 3D CT images by
enhanced sparse shape composition,” Proc. SPIE, vol. 10949, Mar. 2019,
Art. no. 109492D.

H. Jiang et al., “Improved cGAN based linear lesion segmentation
in high myopia ICGA images,” Biomed. Opt. Exp., vol. 10, no. 5,
pp. 2355-2366, 2019.

Z. Zhang, H. Fu, H. Dai, J. Shen, Y. Pang, and L. Shao, “ET-
Net: A generic edge-attention guidance network for medical image
segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent. Cham, Switzerland: Springer, 2019, pp. 442-450.

X. J. Mao, C. Shen, and Y. B. Yang, “Image restoration using very
deep convolutional encoder-decoder networks with symmetric skip con-
nections,” in Proc. Int. Conf. Neural Inf. Process. Syst. (NIPS), 2016,
pp- 2802-2810.

Y. Tai, J. Yang, X. Liu, and C. Xu, “MemNet: A persistent memory
network for image restoration,” in Proc. IEEE Int. Conf. Comput. Vis.
(ICCV), Oct. 2017, pp. 4549-4557.

K. Zhang, W. Zuo, Y. Chen, D. Meng, and L. Zhang, “Beyond a
Gaussian denoiser: Residual learning of deep CNN for image denoising,”
IEEE Trans. Image Process., vol. 26, no. 7, pp. 3142-3155, Jul. 2017.

[35]

[36]

[37]

(38]

[39]

[40]

[41]
[42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

N. Cai, F. Shi, Y. Gu, D. Hu, Y. Chen, and X. Chen, “A resnet-
based universal method for speckle reduction in optical coherence
tomography images,” 2019, arXiv:1903.09330. [Online]. Available:
https://arxiv.org/abs/1903.09330

F. Shi et al., “DeSpecNet: A CNN-based method for speckle reduction in
retinal optical coherence tomography images,” Phys. Med. Biol., vol. 64,
no. 17, Sep. 2019, Art. no. 175010.

Y. Ma, X. Chen, W. Zhu, X. Cheng, D. Xiang, and F. Shi, “Speckle
noise reduction in optical coherence tomography images based on edge-
sensitive ¢cGAN,” Biomed. Opt. Exp., vol. 9, no. 11, pp. 5129-5146,
Nov. 2018.

S. Chen, G. Bortsova, A. G.-U. Judrez, G. Tulder, and M. Bruijne,
“Multi-task attention-based semi-supervised learning for medical image
segmentation,” in Proc. Int. Conf. Med. Image Comput. Comput.-Assist.
Intervent., 2019, pp. 457-465.

Y. Zhou et al, “Collaborative learning of semi-supervised
segmentation and classification for medical images,” in Proc.
IEEE/CVF Conf. Comput. Vis. Pattern Recognit. (CVPR), Jun. 2019,
pp. 2079-2088.

Z. Xu and N. M. Deepatlas, “DeepAtlas: Joint semi-supervised learning
of image registration and segmentation,” in Proc. Int. Conf. Med. Image
Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer, 2019,
pp. 420-429.

S. Sabour, N. Frosst, and G. E. Hinton, “Dynamic routing between
capsules,” in Proc. Adv. Neural Inf. Process. Syst., 2017, pp. 3856-3866.
R. Lalonde and U. Bagci, “Capsules for object segmentation,” 2018,
arXiv:1804.04241. [Online]. Available: http:/arxiv.org/abs/1804.04241
C. Bass et al., “Image synthesis with a convolutional capsule generative
adversarial network,” Med. Imag. Deep Learn., vol. 102, pp. 39-62,
Mar. 2019.

A. Jaiswal, W. AbdAlmageed, Y. Wu, and P. Natarajan, “CapsuleGAN:
Generative adversarial capsule network,” in Proc. Eur. Conf. Comput.
Vis. (ECCV) Workshops. Cham, Switzerland: Springer, 2018, pp. 0-10.
Y. Upadhyay and P. Schrater, “Generative adversarial network
architectures for image synthesis using capsule networks,” 2018,
arXiv:1806.03796.  [Online].  Available:  http://arxiv.org/abs/1806.
03796

C. Li and M. Wand, “Precomputed real-time texture synthesis with
Markovian generative adversarial networks,” in Proc. Eur. Conf. Comput.
Vis. Cham, Switzerland: Springer, 2016, pp. 702-716.

X. Dong et al., “Automatic multiorgan segmentation in thorax CT images
using U-net-GAN,” Med. Phys., vol. 46, no. 5, pp. 2157-2168, 2019.
Z. Han, B. Wei, A. Mercado, S. Leung, and S. Li, “Spine-GAN:
Semantic segmentation of multiple spinal structures,” Med. Image Anal.,
vol. 50, pp. 23-35, Dec. 2018.

J.-Y. Zhu, P. Krihenbiihl, E. Shechtman, and A. A. Efros, “Generative
visual manipulation on the natural image manifold,” in Proc. Eur. Conf.
Comput. Vis. Cham, Switzerland: Springer, 2016, pp. 597-613.

O. Ronneberger, P. Fischer, and T. Brox, “U-Net: Convolutional net-
works for biomedical image segmentation,” in Proc. Int. Conf. Med.
Image Comput. Comput.-Assist. Intervent. Cham, Switzerland: Springer,
2015, pp. 234-241.

K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.
(CVPR), Jun. 2016, pp. 770-778.

C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi, “Inception-v4,
inception-resnet and the impact of residual connections on learning,” in
Proc. AAAI vol. 4, 2017, p. 12.

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros, “Image-to-image translation
with conditional adversarial networks,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit. (CVPR), Jul. 2017, pp. 5967-5976.

B. Wen, Y. Li, and Y. Bresler, “When sparsity meets low-rankness:
Transform learning with non-local low-rank constraint for image
restoration,” in Proc. IEEE Int. Conf. Acoust., Speech Signal Process.
(ICASSP), Mar. 2017, pp. 2297-2301.

J.-Y. Zhu, T. Park, P. Isola, and A. A. Efros, “Unpaired Image-to-Image
translation using cycle-consistent adversarial networks,” in Proc. IEEE
Int. Conf. Comput. Vis. (ICCV), Oct. 2017, pp. 2223-2232.

P. Bao and L. Zhang, “Noise reduction for magnetic resonance images
via adaptive multiscale products thresholding,” IEEE Trans. Med. Imag.,
vol. 22, no. 9, pp. 1089-1099, Sep. 2003.

Z. Amini and H. Rabbani, “Statistical modeling of retinal optical
coherence tomography,” IEEE Trans. Med. Imag., vol. 35, no. 6,
pp. 1544-1554, Jun. 2016.

Z. Wang, E. P. Simoncelli, and A. C. Bovik, “Multiscale structural
similarity for image quality assessment,” in Proc. 37th Asilomar Conf.
Signals, Syst. Comput., 2003, pp. 1398-1402.

Authorized licensed use limited to: Soochow University. Downloaded on April 07,2021 at 07:15:01 UTC from IEEE Xplore. Restrictions apply.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Black & White)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 524288
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /AdobeArabic-Bold
    /AdobeArabic-BoldItalic
    /AdobeArabic-Italic
    /AdobeArabic-Regular
    /AdobeHebrew-Bold
    /AdobeHebrew-BoldItalic
    /AdobeHebrew-Italic
    /AdobeHebrew-Regular
    /AdobeHeitiStd-Regular
    /AdobeMingStd-Light
    /AdobeMyungjoStd-Medium
    /AdobePiStd
    /AdobeSansMM
    /AdobeSerifMM
    /AdobeSongStd-Light
    /AdobeThai-Bold
    /AdobeThai-BoldItalic
    /AdobeThai-Italic
    /AdobeThai-Regular
    /ArborText
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /BellGothicStd-Black
    /BellGothicStd-Bold
    /BellGothicStd-Light
    /ComicSansMS
    /ComicSansMS-Bold
    /Courier
    /Courier-Bold
    /Courier-BoldOblique
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Courier-Oblique
    /CourierStd
    /CourierStd-Bold
    /CourierStd-BoldOblique
    /CourierStd-Oblique
    /EstrangeloEdessa
    /EuroSig
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Helvetica
    /Helvetica-Bold
    /Helvetica-BoldOblique
    /Helvetica-Oblique
    /Impact
    /KozGoPr6N-Medium
    /KozGoProVI-Medium
    /KozMinPr6N-Regular
    /KozMinProVI-Regular
    /Latha
    /LetterGothicStd
    /LetterGothicStd-Bold
    /LetterGothicStd-BoldSlanted
    /LetterGothicStd-Slanted
    /LucidaConsole
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MinionPro-Bold
    /MinionPro-BoldIt
    /MinionPro-It
    /MinionPro-Regular
    /MinionPro-Semibold
    /MinionPro-SemiboldIt
    /MVBoli
    /MyriadPro-Black
    /MyriadPro-BlackIt
    /MyriadPro-Bold
    /MyriadPro-BoldIt
    /MyriadPro-It
    /MyriadPro-Light
    /MyriadPro-LightIt
    /MyriadPro-Regular
    /MyriadPro-Semibold
    /MyriadPro-SemiboldIt
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /Symbol
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Webdings
    /Wingdings-Regular
    /ZapfDingbats
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 300
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 900
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.33333
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /ENU ()
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


