
Computer Methods and Programs in Biomedicine 233 (2023) 107454 

Contents lists available at ScienceDirect 

Computer Methods and Programs in Biomedicine 

journal homepage: www.elsevier.com/locate/cmpb 

OCT 

2 Former: A retinal OCT-angiography vessel segmentation 

transformer 

Xiao Tan 

a , Xinjian Chen 

a , b , Qingquan Meng 

a , Fei Shi a , Dehui Xiang 

a , Zhongyue Chen 

a , 
Lingjiao Pan 

c , Weifang Zhu 

a , ∗

a MIPAV Lab, the School of Electronic and Information Engineering, Soochow University, Jiangsu, China 
b The State Key Laboratory of Radiation Medicine and Protection, Soochow University, Jiangsu, China 
c School of Electrical and Information Engineering, Jiangsu University of Technology, Jiangsu, China 

a r t i c l e i n f o 

Article history: 

Received 14 October 2022 

Revised 25 January 2023 

Accepted 27 February 2023 

Keywords: 

Optical coherence tomography angiography 

Retinal vessel segmentation 

Transformer 

Dynamic token aggregation 

Deep learning 

a b s t r a c t 

Background and objective: Retinal vessel segmentation plays an important role in the automatic retinal 

disease screening and diagnosis. How to segment thin vessels and maintain the connectivity of vessels 

are the key challenges of the retinal vessel segmentation task. Optical coherence tomography angiography 

(OCTA) is a noninvasive imaging technique that can reveal high-resolution retinal vessels. Aiming at make 

full use of its characteristic of high resolution, a new end-to-end transformer based network named as 

OCT 2 Former (OCT-a Transformer) is proposed to segment retinal vessel accurately in OCTA images. 

Methods: The proposed OCT 2 Former is based on encoder-decoder structure, which mainly includes dy- 

namic transformer encoder and lightweight decoder. Dynamic transformer encoder consists of dynamic 

token aggregation transformer and auxiliary convolution branch, in which the multi-head dynamic token 

aggregation attention based dynamic token aggregation transformer is designed to capture the global 

retinal vessel context information from the first layer throughout the network and the auxiliary convo- 

lution branch is proposed to compensate for the lack of inductive bias of the transformer and assist in 

the efficient feature extraction. A convolution based lightweight decoder is proposed to decode features 

efficiently and reduce the complexity of the proposed OCT 2 Former. 

Results: The proposed OCT 2 Former is validated on three publicly available datasets i.e. OCTA-SS, ROSE-1, 

OCTA-500 (subset OCTA-6M and OCTA-3M). The Jaccard indexes of the proposed OCT 2 Former on these 

datasets are 0.8344, 0.7855, 0.8099 and 0.8513, respectively, outperforming the best convolution based 

network 1.43, 1.32, 0.75 and 1.46%, respectively. 

Conclusion: The experimental results have demonstrated that the proposed OCT 2 Former can achieve com- 

petitive performance on retinal OCTA vessel segmentation tasks. 

© 2023 Elsevier B.V. All rights reserved. 
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. Introduction 

A large number of studies have pointed out that diseases such 

s diabetic retinopathy and cardiovascular diseases are related to 

he structural and morphological changes of retinal vessels [1–3] . 

s shown in Fig. 1 , retinal optical coherence tomography angiog- 

aphy (OCTA) can reveal high-resolution vessels with various sizes 

large vessels, small vessels and capillaries) surrounding the fovea 

nd parafovea regions with its noninvasive depth-resolved imaging, 

hich is a new clinical tool for diagnosis and treatment of reti- 

al vascular disease, choroidal neovascularization, macular degen- 

ration, idiopathic macular fovea telangiectasia and other fundus 
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ascular diseases [4,5] . Recent studies have found that the changes 

n retinal microvascular structure revealed by OCTA, including mi- 

rovascular perfusion density, vessel calibers and alterations of vas- 

ular network organization, are associated with some neurodegen- 

rative diseases such as Alzheimer’s and Parkinson’s disease [6–8] . 

herefore, the automatic and accurate retinal vessel segmentation 

n OCTA images is not only a crucial step in the severity evaluation 

f vascular diseases, but also plays a significant role in the assess- 

ent of disease progression and therapeutic effects [9] . However, 

here are many challenges in retinal vessel segmentation such as 

ifficulties in detail structure (thin vessel, vessel edge and vessel 

ifurcation) identification and inconsistency of segmented vessels. 

There are many previous studies focused on retinal vessel seg- 

entation in fundus images. In traditional algorithms, different 

hresholding based methods were used for automatic blood ves- 

el segmentation [10–15] , which is difficult to determine the op- 

https://doi.org/10.1016/j.cmpb.2023.107454
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Fig. 1. OCTA images. 
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imal thresholding and make full use of the geometrical informa- 

ion of the vessel. Various of traditional trainable classifiers such as 

NN-classifier [16] , Bayesian classifier [17] and Adaboost-classifier 

18] were used for retinal vessel segmentation, whose robustness is 

elatively poor. With the rapid development of deep learning, con- 

olutional neural networks (CNN) have been widely used in medi- 

al segmentation tasks [19–23] . Wang et al. applied the UNet for 

etinal vessel segmentation in fundus images [24] .Jin et al. pro- 

osed a modified U-Net for retinal vessel segmentation, which in- 

roduced deformable convolution into the structure [25] . Wu et al. 

ascaded two U-shape encoder-decoder structures together to get 

urther refined retinal vessel segmentation results [26] . Mou et al. 

roposed CS 2 -Net for the automatic detection of curvilinear struc- 

ure including blood vessel and nerve fiber, in which channel and 

patial attention modules are utilized to aggregate the local and 

lobal curvilinear structure features [27] . Fu et al. integrated CNN 

nd conditional random field to learn both hierarchical represen- 

ation and long-range information for retinal vessel segmentation 

28] . Gu et al. proposed a U-shaped network called context encoder 

etwork (CE-Net), which used dense atrous convolution block and 

esidual multi-kernel pooling block to capture more high-level in- 

ormation and preserve spatial information for vessel segmentation 

29] . Ye et al. proposed a multiscale feature interaction network 

MFI-Net) for retinal vessel segmentation, which is equipped with 

yramid squeeze-and-excitation (PSE) module to learn multiscale 

eatures and handle vessels with variable width and coarse-to-fine 

C2F) module to preserve vessel details during the decoding pro- 

ess [30] . Wu et al. proposed a scale and context-sensitive network 

SCS-Net) for retinal vessel segmentation, in which the scale-aware 

eature aggregation (SFA) module is designed for multi-scale fea- 

ure extraction and aggregation, the adaptive feature fusion (AFF) 

odule is designed for the guidance of efficient feature fusion and 

he multi-level semantic supervision (MSS) module is employed 

o learn distinctive semantic representation for refining the vessel 

aps [31] . Yuan et al. proposed the AACA-MLA-D-UNet for reti- 

al vessel segmentation, which aims to fully utilize the low-level 

etailed information and the complementary information encoded 

n different layers to accurately distinguish the vessels from the 

ackground with low model complexity [32] . Wu et al. proposed 

 lightweight deep learning model named as Vessel-Net for retinal 

essel segmentation, which combines the advantages of the incep- 

ion model and residual module for improved feature representa- 

ion, and uses four deep supervision paths to preserve multi-scale 

eep features during model optimization [33] . 

Due to the superiority of OCTA in visualizing the retinal 

lexuses, many researchers have devoted their attention to the 

etinal vessel segmentation in OCTA images in recent years. Yousefi

t al. combined multi-scale Hessian filters and intensity-based 

ethod for retinal vessel segmentation in OCTA images [34] . 
2 
ladawi et al. proposed a joint Markov-Gibbs random field model 

o segment the retinal blood vessels, which integrates both ap- 

earance and spatial information in OCTA images [35] . Sarabi et al. 

sed a segmentation pipeline which consists of curvelet-based de- 

oising, optimally oriented flux vessel enhancement and projec- 

ion artifact removal for OCTA retinal vessel segmentation [36] . 

a et al. proposed a split-based coarse-to-fine vessel segmentation 

etwork for OCTA images [37] , in which a split-based coarse seg- 

entation module was applied to generate the preliminary confi- 

ence map of vessels and a split-based refined segmentation mod- 

le was used to optimize the shape/contour of the vessels. Li et al. 

roposed an end-to-end image projection network (IPN) to achieve 

D-to-2D retinal vessel and foveal avascular zone segmentation in 

CTA images [38] . Based on [38] , Li et al. proposed the image pro-

ection network V2 (IPN-V2) [39] , which extends IPN by adding a 

lane perceptron to enhance the perceptron ability in the horizon- 

al direction. Wu et al. proposed a progressive attention-enhanced 

etwork (PAENet) for 3D to 2D retinal vessel segmentation, which 

onsists of the 3D feature learning path and the 2D segmentation 

ath [40] . Li et al. proposed a novel image magnification network 

IMN) for vessel segmentation in OCTA images, which consists of 

n up-sampled encoding path and a down-sampled decoding path 

o capture more image details and reduce the omission of thin- 

nd-small structures [41] . Menten et al. presented a pipeline to 

ynthesize large amounts of realistic OCTA images with intrinsi- 

ally matching ground truth labels, including a physiology-based 

imulation that models the various retinal vascular plexuses and a 

uite of physics-based image augmentations that emulate the OCTA 

mage acquisition process, which can improve the vessel segmenta- 

ion performance of several segmentation networks such as U-Net, 

S-Net and CE-Net on the publicly available ROSE-1 dataset [42] . 

i et al. proposed a retinal image projection segmentation network 

RPS-Net) to achieve retinal vessel and foveal avascular zone seg- 

entation in OCTA images, in which a dual-way projection learn- 

ng module is designed to extract global planar features and lo- 

al detail supplements simultaneously [43] . Pissas et al. proposed 

 recurrent CNN named as iUNet for vessel segmentation in OCTA 

mages, which iteratively refines the quality of the produced vessel 

ith weight sharing coupled with a perceptual loss [44] . 

Although above CNN based segmentation networks have 

chieved good performances in retinal vessel segmentation, the lo- 

al and limited receptive field of CNN, which is critical for seman- 

ic segmentation, is still one of its shortcomings. Different from 

NN, the forms of the global input embeddings allow transformer 

o have a global receptive field, solving the limited receptive field 

roblem of CNN in each layer [45] . Therefore, many works have 

ttempted to introduce transformer into semantic segmentation 

asks [46–48] . Zheng et al. first introduced transformer into se- 

antic segmentation and achieved promising results on ADE20K, 

ascal Context and Cityscapes datasets [45] . Xie et al. proposed a 

imple, efficient and powerful semantic segmentation framework 

amed as SegFormer, which contains a positional-encoding-free, 

ierarchical transformer encoder and a lightweight All-MLP (Multi- 

ayer Perceptron) decoder. SegFormer achieved good segmentation 

erformance on ADE20K and Cityscapes datasets [48] . Chen et al. 

rst used transformer for multi-organ segmentation in CT images, 

hich laid the foundation for the transformer in many medical 

mage segmentation tasks later [49] . Zhang et al. combined the 

onvolutional network with transformer from a local and global 

erspective for ultrasound image segmentation [50] . Ji et al. re- 

laced the skip connection in U-Net with a transformer struc- 

ure and attained significant segmentation improvements on six 

iomedical image benchmarks including Pannuke, CVC-Clinic, CVC- 

olon, Etis, Kavirs and ISIC2018 datasets [51] . Shen et al. developed 

 CNN-Transformer hybrid network for micro-vessel segmentation 

nd outperformed several state-of-the-art vessel segmentation net- 
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orks on DRIVE, STARE, HRF and CHASE-DB1 datasets [52] . Be- 

ause the retinal vessels are characterized by the tree-like topo- 

ogical structure that the thick vessel are usually connected with 

everal thin vessels, the global receptive field property of the trans- 

ormer will be applied for the retinal vessel segmentation in OCTA 

mages in this paper, which is crucial for segmenting thin vessel 

nd maintaining the connectivity of vessels. However, there are 

till two challenges to be overcome. One is that the calculation of 

ransformer is huge. The other is that the convergence of the trans- 

ormer is slow, which may be difficult to converge on commonly 

mall medical image datasets such as retinal OCTA image datasets. 

herefore, can transformer be applied to retinal OCTA vessel seg- 

entation task? How to solve the problem of the expensive calcu- 

ation in transformer? How to solve the problem of the slow con- 

ergence of the transformer? These three questions are the focuses 

f this paper. 

In summary, the main contributions of this paper can be high- 

ighted as: 

(1) A novel hybrid transformer OCT 2 Former (OCT-a Trans- 

former) is proposed for retinal OCTA vessel segmentation. 

(2) Multi-head dynamic token aggregation attention based dy- 

namic token aggregation transformer is proposed to capture 

global retinal vessel information and reduce the expensive 

calculation in both time and space perspectives. 

(3) Auxiliary convolution branch is designed to compensate for 

the lack of inductive bias of the transformer, which can 

speed up the convergence of the proposed OCT 2 Former with 

negligible increase of parameters. 

(4) Comprehensive experiments on three publicly available reti- 

nal OCTA datasets including OCTA-SS [53] , ROSE-1[38] and 

OCTA-500[40] (subset OCTA-6M and OCTA-3M) indicate the 

effectiveness of the proposed OCT 2 Former. 

. Methods 

.1. Network architecture 

Fig. 2 shows the architecture of the proposed OCT 2 Former, 

hich is based on the U-shape encoder-decoder structure 

ith skip connections. The encoder path consists of the dynamic 

ransformer encoder and the group embedding module. Two con- 

olution based lightweight decoders and a 1 × 1 convolution con- 

titute the decoder path. The novelly proposed dynamic trans- 

ormer encoder consists of dynamic token aggregation transformer 

nd auxiliary convolution branch. As is shown in Fig. 2 , when the 

CTA image is fed into the proposed OCT 2 Former, a convolutional 

tem module consisted of two 3 × 3 convolutions is first applied 

o the original OCTA image to obtain the primary feature maps 

nd increase the number of channels without resolution change. 

hen, these features are fed into three consecutive dynamic trans- 

ormer encoders to obtain semantic tokens with rich global infor- 

ation level by level. In order to capture multi-scale information 

nd make up for the loss of position information of the dynamic 

ransformer encoders, the semantic tokens from the first two dy- 

amic transformer encoders are then fed into the group embed- 

ing modules, respectively. In the decoder path, the multi-scale 

emantic tokens from dynamic transformer encoders are fed into 

he lightweight decoder to recover original resolution. At the end 

f the decoder path, a 1 × 1 convolution is applied to obtain the 

nal segmentation map. 

.2. Dynamic transformer encoder 

.2.1. Vision transformer 

Typically, as shown in Fig. 3 (a), a vision transformer (ViT) con- 

ists of a stack of self-attention (SA) layers followed by a feed- 
3 
orward network, with the main idea of processing the images in 

 sequence-to-sequence manner and taking self-attention mecha- 

ism between each sequence [54] . For a given entity in the se- 

uence, SA layer essentially consists of the dot product of the 

uery and all keys and the normalized attention score acquisi- 

ion via the softmax operator. Through the SA layer, the entity be- 

omes a weighted sum of all entities in the sequence, in which 

he weights are determined by the normalized attention score. The 

unction of SA layer between different input embeddings can be 

alculated as follows: 

A ( Q, K, V ) = softmax 

( 

QK 

T √ 

d k 

) 

· V (1) 

here K, Q, V are the projections of key, query and value, respec- 

ively. d k is the dimension of the key projection K and 

√ 

d k pro- 

ides a normalization to make the gradient more stable. 

To encapsulate multiple complex relationships between differ- 

nt positions in the sequence, multi-head self-attention (MHSA) 

onsisted of multiple self-attention blocks is taken in transformer. 

ifferent from single-head self-attention, MHSA is aimed to learn 

equence-to-sequence information in different representation sub- 

paces. MHSA divides the input into M heads ( head 1 ,…head i ,…, 

ead M 

), calculates the self-attention of each head in parallel, and 

oncatenates them to get the final output. The formula of MHSA 

an be written as follows: 

ead i = SA 

(
QW 

Q 
i 

, KW 

K 
i , V W 

V 
i 

)
(2) 

HSA ( Q, K, V ) = Concat 
(
( head 1 , . . . head i , . . . , head M 

) W 

O 
)

(3) 

here W 

Q 
i 

W 

K 
i 

W 

V 
i 

( i = 1 , 2 , . . . , M ) W 

O are the independently 

earnable weight matrices. 

Each MHSA layer is followed by a multi-layer perceptron (MLP), 

hich is consisted a linear layer and a GeLU activation. Similar to 

esidual networks, both MHSA and MLP have a skip-connection 

nd a normalization layer. The output of operations mentioned 

bove can be described as: 

 

 l = MHSA ( LN ( x l−1 ) ) + x l−1 (4) 

 l = MLP 
(
LN 

(
ˆ x l 
))

+ 

ˆ x l (5) 

here LN represents the layer normalization, x l and x l − 1 represent 

he output of l th and ( l − 1) th layer, respectively. 

.2.2. Dynamic token aggregation transformer 

Although transformer has the advantage of global receptive 

eld capture capability, the expensive calculation may limit its ap- 

lication in semantic segmentation tasks. Some previous works 

ook 4 × or even 8 × down-sampling operation to reduce the cal- 

ulation of transformer, which can be hardly adopted in the reti- 

al vessel segmentation task, because the thin vessels will disap- 

ear with the high ratio down-sampling operation. How to de- 

ign a transformer to overcome the huge computational complex- 

ty and the resolution change issue is crucial for retinal vessel 

egmentation. In vision transformers, the tokens usually contain 

 large amount of redundant information, with only a subset of 

ost informative tokens contributing to the final prediction [55] . 

o prune redundant tokens, inspired by deep learning based super- 

ixel sampling [56] , we propose a novel approach called multi- 

ead dynamic token aggregation attention (MDTAA), which at- 

empts to dynamically aggregate relevant tokens in the embedding 

nd remove the redundant information. Fig. 3 (b) shows the archi- 

ecture of the proposed dynamic token aggregation transformer, in 

hich the proposed MDTAA module replaces with the MHSA mod- 

le in the original transformer. 
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Fig. 2. An overview of the proposed OCT 2 Former. 

Fig. 3. Structure of vision transformer (ViT) and the proposed dynamic token ag- 

gregation transformer. (a) ViT, (b) The proposed dynamic token aggregation trans- 

former. MHSA represents multi-head self-attention, MDTAA represents multi-head 

dynamic token aggregation attention, and MLP represents multi-layer perceptron. 
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Fig. 4. The architecture of multi-head dynamic token aggregation attention 

(MDTAA). 
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Fig. 4 shows the detailed architecture of the proposed MD- 

AA module. In order to effectively utilize the input token em- 

edding T ∈ R 

D ×N , where D denotes the dimension of embedding 

nd N is the length of embedding, our main idea is to create a 

ew, condensed token embedding named as aggregation embed- 

ing T ag ∈ R 

D ×k ( k << N, k is set to 128 in this paper), which can
4 
ffectively aggregate the important information and reduce the re- 

undant information from the original embedding. The input token 

mbedding T is first fed into initialization unit to generate the ini- 

ial aggregation embedding T ag ∈ R 

D ×k , which initially aggregates 

okens that are adjacent in pixel location via an adaptive average 

ooling layer. 

 ag = Init ( T ) (6) 

The close proximity between tokens in pixel location may not 

lways be reflected in high-dimensional semantic space. As a re- 

ult, the T ag ∈ R 

D ×k captures some of the global information from 

he original embedding, but its retained semantic information is 

imited. To dynamically retain more abstract information and elim- 
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Algorithm 1 

Dynamic Token Aggregation (DTA). 

Input: Projection token embedding T ∈ R D ×N 

Output: Aggregation token embedding T ag ∈ R D ×k 

1.Initialize the aggregation embedding T ag , 

T ag = Init(T ) 
2.For iteration from 1 to T do: 

(1) Calculate cosine distance cos ( τ i 
ag , τ

j ) between each candidate 

representation pairs τ i 
ag and τ j , 

cos ( τ i 
ag , τ

j ) = 

(τ i 
ag ) 

T ·τ j 

τ i 
ag ·τ j 

(2) Construct cosine distance map, 

M ( T ag , T ) = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

cos ( τ 0 
ag , τ

0 ) · · · · · · cos ( τ 0 
ag , τ

N ) 

cos ( τ 1 
ag , τ

0 ) 
. . . 

. 

. 

. 

. 

. 

. 
. . . 

. 

. 

. 

cos ( τ k 
ag , τ

0 ) · · · · · · cos ( τ k 
ag , τ

N ) 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(3) Calculate soft assignment �, 

� = softargmax ( M ( T ag , T ) ) 
(4) Update T ag , 

T ag = T · �

3.End for 

4.Return T ag 

Fig. 5. The architecture of auxiliary convolution branch (ACB). GCB represents 

group convolution block. 
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nate redundant information, the cosine distance map M ( T ag , T ) ∈ 

 

N×k is adopted to measure the similarity between T ag and T in 

 high-dimensional vector space, where the higher value indicates 

ower similarity, and vice versa. For each ( i , j ) candidate represen-

ation pair τ i 
ag ∈ T ag and τ j ∈ T in embedding dimension D , the co-

ine distance between them can be formulated as: 

os 
(
τ i 

ag , τ
j 
)

= 

(τ i 
ag ) 

T · τ j 

τ i 
ag · τ j 

(7) 

The cosine distance map M ∈ R 

N×k is constructed by each 

os ( τ i 
ag , τ

j ) , and can be defined as follows, 

 

(
T ag , T 

)
= 

⎡ ⎢ ⎢ ⎢ ⎢ ⎣ 

cos 
(
τ 0 

ag , τ
0 
)

cos 
(
τ 0 

ag , τ
1 
)

· · · cos 
(
τ 0 

ag , τ
N 
)

cos 
(
τ 1 

ag , τ
0 
) . . . 

. 

. 

. 

. 

. 

. 
. . . 

. 

. 

. 

cos 
(
τ k 

ag , τ
0 
)

· · · · · · cos 
(
τ k 

ag , τ
N 
)

⎤⎥⎥⎥⎥⎦
(8) 

If as expected, the maximum value in each N dimension of 

 ( T ag , T ) represents the most informative token that should be 

reserved. However, using the argmax function to identify these 

okens is not desirable, because it is not differentiable and would 

esult in other tokens being dropped which should be aggregated 

nitially. To overcome this issue, a softargmax (a smooth version of 

rgmax ) function is used on M ( T ag , T ) to obtain a soft assignment

ap � ∈ R 

N×k , which is differentiable and can better reflect the 

orrelation between T ag and T . 

= sof targmax ( M ( T ag , T ) ) (9) 

Therefore, each aggregation token can be regarded as the 

eighted summation or aggregation of the original token embed- 

ings, where the informative tokens have larger weights and vice 

ersa. With the optimized �opt , the final aggregation embedding 

 ag can be represented as, 

 ag = T · �opt (10) 

However, since the initial distance between the aggregation em- 

edding and the original embedding is random, the token obtained 

ia single aggregation is relatively rough. To optimize the � better, 

n iteration optimization algorithm named as dynamic token ag- 

regation (DTA) is designed as the following Algorithm 1 , in which 

he iteration number T is a super-parameter and selected accord- 

ng to the prior task-specific information and set to 3 in this paper 

s the iteration stop condition. 

As can be seen from Fig. 4 , the projections of query and key 

 Q 

′ , K 

′ ) are sent into the dynamic token aggregation operation, re-

pectively to get the aggregated projections of query, and key( Q, 

 ). Then the dynamic token aggregation attention can be formu- 

ated as: 

T AA ( Q, K, V ) = softmax 

( 

DT A ( Q ) · DT A ( K ) 
T √ 

d k 

) 

· V (11) 

here DTAA represents the dynamic token aggregation attention, 

nd DTA represents the dynamic token aggreagation operation. 

Aiming to learn sequence-to-sequence information in the differ- 

nt representation subspaces, multi-head dynamic token aggrega- 

ion attention (MDTAA) is adopted as follows: 

ead i = DT AA 

(
QW 

Q 
i 

, KW 

K 
i , V W 

V 
i 

)
(12) 

DT AA ( Q, K, V ) = Concat ( head 1 , . . . , head i , . . . , head M 

) W 

O (13) 

here W 

Q 
i 

, W 

K 
i 

, W 

V 
i 

( i = 1 , 2 , . . . , M ) , W 

O are independently learn- 

ble weight matrices. 
5

With the dynamic token aggregation attention, the compu- 

ational complexity of the proposed dynamic token aggregation 

ransformer can be reduced from O ( N 

2 ) to O ( kN ). As k is set to 128

n this paper, the computational complexity can be approximately 

qual to O ( N ). 

.2.3. Auxiliary convolution branch 

Due to the lack of inductive bias in transformer, the proposed 

ynamic token aggregation transformer based model suffers from 

low convergence problem, which is a typical challenge in trans- 

ormer. To overcome this problem, an auxiliary convolution branch 

ACB) is design to supplement the inductive bias for transformer, 

hich is shown in Fig. 5 . As shown in Fig. 5 , the ACB consists

f two cascaded group convolution blocks (GCB), each of which 

s composed of a 3 × 3 group convolution, a batch normalization 

nd a ReLU activation. With the ACB, the proposed OCT 2 Former 

an converge faster with smaller loss fluctuations. Although the 

CB offers limited contribution to the overall performance im- 

rovement, it can speed up the convergence of the proposed 

CT 2 Former with negligible increase of parameters, which is of 

reat significance to apply transformer in retinal vessel segmen- 

ation. 
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.2.4. Token fusion 

The token from dynamic token aggregation transformer X t and 

he feature from auxiliary convolution branch X c are fused to ob- 

ain the encoded tokens from dynamic token aggregation trans- 

ormer encoder X encoder as follows: 

 encoder = α · f ( X c ) + X t (14) 

here f ( · ) is a feature tokenizer function converting 2D features 

o 1D sequence and α is a learnable parameter and is initialized to 

.1. 

.3. Group embedding module 

In order to obtain multi-scale features, pooling operation is 

ommonly inserted after the encoder in U-shape network. Follow- 

ng this principle, a group embedding module (GEM) is designed 

nd inserted after the first two dynamic transformer encoders, re- 

pectively, which consists of a de-tokenizer, a 3 × 3 group con- 

olution and a tokenizer (shown in Fig. 2 ). Each semantic token 

 encoder generated by dynamic token aggregation transformer is de- 

okenized into 2D shapes, fed into a 3 × 3 group convolution with 

tride 2 and tokenized to obtain the output of GEM X GEM 

, which 

an be formulated as: 

 GEM 

= f 
(
GCon v 3 x 3 ( f −1 (X encoder )) 

)
(15) 

here f ( · ) is a feature tokenizer function, f −1 ( · ) is a feature de-

okenizer function and GConv 3 x 3 ( · ) is a 3 × 3 group convolution 

ith stride 2. 

Different from the traditional pooling operation and linear em- 

edding, GEM can not only compensate for the loss of position in- 

ormation after feature tokenization, but also prevent the loss of 

etailed information by storing it via multiple channels during the 

esolution decreasing, which is of great significance for the seg- 

entation of thin retinal vessels with blurred boundaries. 

.4. Lightweight decoder 

In encoder-decoder architecture, decoder is designed to recover 

he spatial resolution of semantic feature maps from the encoder. 

o recover the spatial resolution efficiently and reduce the param- 

ters of the proposed OCT 2 Former, convolution based lightweight 

ecoder (LD) is designed to constitute the decoder path. LD con- 

ists of a lightweight convolution unit (a 3 × 3 convolution, a batch 

ormalization and a ReLU activation) and a bilinear up-sampling 

nit. 

Given the feature maps F in ∈ R 

C in × H × W from encoder, the up- 

ampled feature maps F out ∈ R 

C out × σH × σW via LD can be formu- 

ated as: 

 out = BU (ReLU ( BN ( Con v 3 x 3 ( F in ) ) ) (16) 

here Conv 3 x 3 ( · ) represents a 3 × 3 convolution, BN ( · ) is a batch

ormalization layer, ReLU ( · ) is a ReLU activation and BU ( · ) means

 bilinear up-sampling unit. 

.5. Loss function 

In this paper, binary cross-entropy loss (BCE) is used as the loss 

unction for training the network, as it is a pixel-wise loss func- 

ion that directly evaluates the distance between the label and the 

rediction. The BCE loss is defined as follows: 

 BCE = − 1 

M 

M ∑ 

i =1 

g i · log ( p i ) + ( 1 − g i ) · log ( 1 − p i ) (17) 

here g i ∈ {0, 1} indicates the ground truth, p i ∈ [0, 1] is the cor-

esponding predicted value, and M is the number of pixels. 
6 
. Experiment settings 

.1. Datasets 

Three publicly available datasets including OCTA-SS [53] , ROSE- 

 [37] and OCTA-500 [39] (subset OCTA-6M and OCTA-3M) are 

dopted to evaluate the performance of the proposed OCT 2 Former. 

ig. 6 shows some examples of OCTA images and the correspond- 

ng pixel-level ground truth. 

.1.1. OCTA-SS 

OCTA-SS is provided by Usher Institute, University of Edinburgh, 

K, which is an open dataset of retinal parafoveal OCTA images 

ith associated manual vasculature segmentations from 11 partic- 

pants. Imaging was performed using the commercial RTVue-XR 

vanti OCT system (Optovue, Fremont, CA). The superficial layer 

containing the vasculature enclosed in the internal limiting mem- 

rane (ILM) and the inner plexiform layer (IPL)) with 3mm × 3mm 

eld-of-view (FOV) from left and right eyes of 11 participants were 

elected to generate en face angiograms. For each of those images, 

ve sub-images were extracted from each clinical region of inter- 

st (ROI): superior, nasal, inferior, temporal and fovea. Poor quality 

OIs were discarded and from the remaining a dataset containing 

5 ROIs was created. The size of each ROI image is 91 × 91. The 

ataset is splitted into training set (27 images), validation set (3 

mages) and testing set (25 images), which is consistent with Ref- 

rence [53] . 

.1.2. ROSE-1 

Dataset ROSE-1 is provided by Cixi Institute of Biomedical 

ngineering, Ningbo Institute of Industrial Technology, Chinese 

cademy of Sciences, China. ROSE-1 contains 117 OCTA images 

rom 39 subjects (including 26 with Alzheimer’s disease and 13 

ealthy controls), which were captured by the RTVue XR Avanti 

D-OCT system (Optovue, USA) equipped with AngioVue software. 

he OCTA scan area was 3 × 3 mm 

2 centered on the fovea with 

he image resolution of 304 × 304 pixels. The superficial vascular 

omplexes (SVC) en face angiograms (39 images) with pixel-wise 

round truth are selected in our study. The dataset is splitted into 

raining set (27images), validation set (3 images) and testing set (9 

mages), which is consistent with Reference [37] . 

.1.3. OCTA-500 

OCTA-500 is provided by School of Computer Science and En- 

ineering, Nanjing University of Science and Technology, China, 

hich contains two subsets including OCTA-6M from 300 subjects 

ith 6mm × 6mm FOV and OCTA-3M from 200 subjects with 

mm × 3mm FOV. The data were collected using a commercial 

0 kHz spectral-domain OCT system with a center wave-length of 

40 nm (RTVue-XR, Optovue, CA). OCTA maximum projection be- 

ween internal limiting membrane (ILM) and Bruch’s membrane 

BM), which can clearly reveal the vascular morphology of the in- 

er retina and is the commonly used OCTA projection map for 

etinal vessel segmentation, is adopted in our study. Pixel-wise 

round truth were manually drawn by five trained researchers 

nd reviewed by three ophthalmologists. OCTA-6M and OCTA-3M 

re independently used to evaluate the retinal vessel segmenta- 

ion performance of the proposed OCT 2 Former and other networks. 

CTA-6M is split into training set (NO.10 0 01-NO.10180), validation 

et (NO.10181- NO.10200) and test set (NO.10201-NO.10300), and 

CTA-3M is split into training set (NO.10301-NO.10440), validation 

et (NO.10441-NO.10450) and test set (NO.10451-NO.10500), which 

re consistent with References [38] and [39] . 
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Fig. 6. Examples of OCTA image and pixel-wise ground truth from three datasets. (a)OCTA-SS, (b) ROSE-1, (c) OCTA-500: subset OCTA-6M, (d) OCTA-500: subset OCTA-3M. 
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.2. Implementation details 

The proposed OCT 2 Former is implemented on the pyt-orch plat- 

orm with one NVIDIA RTX3090 GPU with 24GB memory. For fair- 

ess, both OCT 2 Former and other networks are trained with 100 

pochs and batch size of 2. Adaptive moment estimation (Adam) 

ptimization with momentum 0.9 and weight decay 0.001, and 

loy learning rate l r = base _ l r ( 1 − iter/ ( ma x _ iter ) ) power 
with power 

.9 are employed. Random left-right flipping, top-down flipping 

nd rotation from −10 ° to 10 ° are applied for data augmentation. 

e have released the codes on Github ( https://github.com/coreeey/ 

CT2Former ). 

.3. Evaluation metrics 

To objectively evaluate the pixel-level segmentation perfor- 

ance of our proposed OCT 2 Former, five metrics including Jaccard 

ndex (JAC), Dice coefficient (DICE), balanced accuracy (BACC), pre- 

ision (PRE) and recall (REC) are adopted, which are defined as fol- 

ows: 

AC = T P/ ( T P + F P + F N ) (18) 

ICE = 2 T P/ ( 2 T P + F P + F N ) (19) 

ACC = 

( T P R + T NR ) 

2 

(20) 

 RE = T P/ ( T P + F P ) (21) 

EC = T P R = T P/ ( T P + F N ) (22) 

 NR = T N/ ( T N + F P ) (23) 

here TP and FP represent true postive and false postive, respec- 

ively, TN and FN respresent true negative and false negative, re- 

pectively, TPR is true positive rate, and TNR is true negative rate. 
7 
Furthermore, for the evaluation of the topology-level segmenta- 

ion performance, connectivity area length metric (CAL) and largest 

onnected component ratio (LCC) [53] are also adopted. CAL met- 

ic is based on three descriptive features: (1) Connectivity (C), to 

ssess the fragmentation degree between segmentations, (2) Area 

A), to evaluate the degree of overlapping, (3) and Length (L), to 

apture the degree of coincidence, which are defined as follows: 

 ( S, G ) = 1 − min 

(
1 , 

| # C G − # C S | 
# G 

)
(24) 

 ( S, G ) = 

# ( ( δα( S ) ∩ G ) ∪ ( S ∩ δα( G ) ) 

# ( S ∪ G ) 
(25) 

 ( S, G ) = 

# 

((
ϕ ( S ) ∩ δβG 

))
∪ 

(
δβ ( S ) ∩ ϕ ( G ) 

)
# ( ϕ ( S ) ∪ ϕ ( G ) ) 

(26) 

AL ( S, G ) = C × A × L (27) 

here # C G and # C S are the number of the connected components 

n the segmented image and ground truth, respectively. # G is the 

umber of vessel pixels in the ground truth, δαand δβ represent 

he morphological dilations using the disc of radiuses α and β , re- 

pectively, and ϕ is a skeletonization procedure. LCC is defined as: 

CC = 1 − min 

(
1 , 

| # LCC S − # LCC G | 
# LCC G 

)
(28) 

here # LCC S and # LCC G refer to the number of pixels in the longest

onnected component of the skeleton in the segmented image and 

round truth, respectively. 

. Results and discussion 

.1. Comparison experiments 

The proposed OCT 2 Former is evaluated on three public OCTA 

atasets and compared with several state-of-the-art segmentation 

https://github.com/coreeey/OCT2Former
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Table 1 

Comparison results on OCTA-SS dataset. 

Methods JAC DICE BACC PRE REC CAL LCC p-value 

U-Net [53] - 89.00 ±0.00 - 97.00 ±0.00 87.00 ±0.00 90.00 ±0.00 93.00 ±0.00 - 

CS-Net [53] - 89.00 ±0.00 - 93.00 ±0.00 91.00 ±0.00 90.00 ±0.00 93.00 ±0.00 - 

U-Net3 + [57] 81.44 ±2.22 89.75 ±1.34 91.65 ±1.65 91.92 ±1.65 92.33 ±2.64 90.12 ±3.39 91.89 ±1.08 < 0.001 

CE-Net [29] 73.31 ±2.17 84.58 ±1.44 87.25 ±2.13 88.00 ±3.10 85.85 ±2.82 86.55 ±3.36 79.90 ±2.18 < 0.001 

iUNet [44] 81.73 ±2.36 89.93 ±1.43 92.00 ±1.67 92.85 ±2.27 91.15 ±3.68 90.40 ±2.78 92.17 ±1.38 < 0.001 

MFI-Net [30] 79.79 ±2.74 88.74 ±1.71 90.69 ±1.51 90.99 ±3.12 90.39 ±2.88 86.82 ±5.56 77.18 ±2.86 < 0.001 

SCS-Net [31] 82.01 ±2.26 90.10 ±1.36 91.73 ±1.43 91.52 ±3.29 91.95 ±3.99 90.47 ±3.98 92.11 ±1.61 < 0.001 

AACA-MLA-D-UNet [32] 81.40 ±2.96 89.71 ±1.83 91.37 ±1.54 92.73 ±3.59 90.02 ±4.21 89.54 ±2.73 90.05 ±2.35 < 0.001 

Vessel-Net [33] 81.56 ±1.96 89.83 ±1.19 91.83 ±1.76 91.90 ±3.39 91.77 ±2.32 90.25 ±2.25 93.13 ±1.29 < 0.001 

TransUNet [49] 79.27 ±2.21 88.42 ±1.38 90.78 ±1.94 90.88 ±2.33 91.13 ±1.56 88.57 ±2.66 93.08 ±1.22 < 0.001 

UTNet [58] 81.52 ±2.49 89.80 ±1.51 91.62 ±1.65 92.06 ±2.18 91.34 ±3.16 89.21 ±3.83 87.27 ±1.80 < 0.001 

Swin-UNet [59] 78.46 ±2.48 87.91 ±1.55 90.22 ±1.81 90.53 ±2.39 90.48 ±2.50 87.63 ±3.93 81.29 ±2.45 < 0.001 

SegFormer [48] 80.20 ±2.08 88.93 ±1.69 90.79 ±4.74 90.91 ±6.35 90.68 ±3.68 89.47 ±3.87 89.93 ±1.58 < 0.001 

OCT 2 Former 83.44 ±1.85 90.96 ±1.10 92.64 ±1.60 92.95 ±1.97 92.34 ±2.63 91.52 ±2.56 96.05 ±2.24 - 

Table 2 

Comparison results on ROSE-1 dataset. 

Methods JAC DICE BACC PRE REC CAL LCC p-value 

U-Net [60] 70.34 ±2.09 82.57 ±1.44 89.49 ±1.88 95.27 ±0.61 81.52 ±4.19 66.13 ±3.80 71.53 ±2.87 < 0.001 

CS-Net [27] 76.05 ±1.64 86.41 ±1.06 92.67 ±1.67 96.18 ±0.59 87.85 ±3.96 71.52 ±4.71 69.15 ±2.56 < 0.001 

U-Net3 + [57] 77.23 ±2.26 87.13 ±1.45 92.21 ±1.91 96.48 ±0.61 86.31 ±4.20 74.69 ±4.64 75.20 ±2.16 < 0.001 

CE-Net [29] 76.43 ±1.85 86.63 ±1.19 92.94 ±1.53 96.22 ±0.64 88.40 ±3.45 75.43 ±3.95 74.66 ±2.06 < 0.001 

iUNet [44] 76.61 ±1.92 86.74 ±1.53 93.08 ±1.77 96.44 ±0.85 88.71 ±4.13 75.12 ±3.94 80.17 ±1.52 < 0.001 

MFI-Net [30] 73.68 ±2.87 84.47 ±1.95 90.70 ±2.11 96.75 ±0.60 83.65 ±4.57 68.98 ±5.47 74.40 ±1.94 < 0.001 

SCS-Net [31] 76.06 ±1.60 86.39 ±1.04 93.33 ±1.51 97.11 ±0.94 89.55 ±3.66 75.29 ±3.34 81.16 ±1.38 < 0.001 

AACA-MLA-D-UNet [32] 75.56 ±2.09 86.06 ±1.35 91.93 ±1.82 97.76 ±0.57 86.11 ±4.02 73.30 ±3.60 79.37 ±1.52 < 0.001 

Vessel-Net [33] 75.75 ±1.90 86.19 ±1.23 93.18 ±1.46 97.10 ±0.94 89.26 ±3.53 73.31 ±3.74 75.37 ±1.95 < 0.001 

TransUNet [49] 73.36 ±2.24 84.61 ±1.49 90.67 ±1.80 95.81 ±0.61 83.51 ±3.78 69.32 ±3.51 81.00 ±1.53 < 0.001 

UTNet [58] 77.58 ±1.51 87.36 ±0.97 93.14 ±1.67 96.46 ±0.52 88.55 ±3.83 75.94 ±2.61 77.58 ±1.94 < 0.001 

Swin-UNet [59] 62.73 ±2.95 77.06 ±2.24 86.99 ±2.81 93.64 ±0.86 77.85 ±6.52 56.50 ±4.20 57.88 ±2.09 < 0.001 

SegFormer [48] 74.07 ±2.15 85.09 ±1.44 91.86 ±1.62 97.33 ±0.61 86.39 ±3.45 72.98 ±4.54 80.42 ±2.21 < 0.001 

OCT 2 Former 78.55 ±2.15 87.97 ±1.35 93.12 ±1.65 96.67 ±0.55 88.20 ±3.55 76.86 ±4.23 81.70 ±1.23 - 

Table 3 

Comparison results on OCTA-6M datase t. 

Methods JAC DICE BACC PRE REC CAL LCC p-value 

U-Net [39] 79.11 ±3.97 88.28 ±2.59 92.98 ±1.62 - - - - - 

CS-Net [27] 80.24 ±3.81 89.01 ±2.45 93.55 ±1.57 97.99 ±0.55 89.10 ±3.07 83.50 ±4.97 86.66 ±1.60 < 0.001 

U-Net3 + [39] 79.47 ±4.26 88.49 ±2.80 93.07 ±1.78 - - - - - 

CE-Net [29] 80.21 ±3.91 88.96 ±2.56 93.74 ±1.43 97.98 ±0.67 88.53 ±2.78 83.27 ±4.19 85.82 ±1.61 < 0.001 

iUNet [44] 80.32 ±3.87 89.00 ±2.47 93.88 ±1.55 98.95 ±0.41 88.81 ±3.05 83.02 ±4.91 87.20 ±1.84 < 0.001 

MFI-Net [30] 79.59 ±3.77 88.62 ±2.57 93.51 ±1.60 98.39 ±0.51 88.65 ±3.12 83.21 ±4.99 85.52 ±1.61 < 0.001 

SCS-Net [31] 80.15 ±3.71 88.93 ±2.37 93.44 ±1.59 98.03 ±0.39 87.86 ±3.15 83.11 ±4.81 86.76 ±1.57 < 0.001 

AACA-MLA-D-UNet [32] 79.93 ±3.88 88.79 ±2.52 93.29 ±1.54 99.02 ±0.56 87.55 ±3.01 83.36 ±5.20 85.76 ±1.39 < 0.001 

Vessel-Net [33] 80.21 ±4.09 88.95 ±2.68 93.83 ±1.60 98.92 ±0.57 88.73 ±3.07 83.49 ±5.43 85.90 ±1.63 < 0.001 

TransUNet [49] 80.10 ±3.68 88.90 ±2.37 93.64 ±1.52 97.98 ±0.58 88.34 ±3.05 84.01 ±4.77 86.20 ±1.69 < 0.001 

UTNet [58] 80.41 ±1.51 89.08 ±2.53 93.91 ±1.50 98.00 ±0.65 88.90 ±2.92 83.69 ±5.15 87.65 ±1.65 < 0.001 

Swin-UNet [59] 70.16 ±3.78 82.40 ±2.68 90.58 ±1.73 96.77 ±0.59 83.01 ±3.43 75.91 ±5.68 69.73 ±1.80 < 0.001 

SegFormer [48] 77.68 ±3.89 87.38 ±2.57 92.95 ±1.51 98.75 ±0.55 87.16 ±2.94 82.34 ±5.02 77.79 ±1.54 < 0.001 

OCT 2 Former 80.99 ±1.77 89.45 ±2.15 94.11 ±1.45 98.06 ±0.68 89.27 ±2.92 84.24 ±5.17 88.80 ±1.34 - 
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etworks, including nine convolution based networks (U-Net, CS- 

et, UNet3 + , CE-Net, iUNet, MFI-Net, SCS-Net, AACA-MLA-D-UNet 

nd Vessel-Net), two hybrid transformer networks (TransUNet and 

TNet) and two pure transformer based network (Swin-UNet and 

egFormer). Tables 1–4 show the results of different segmentation 

etworks on three public OCTA datasets, respectively, where hy- 

rid transformer networks including the proposed OCT 2 Former and 

TNet, outperform most of the convolution based networks and 

he pure transformer based network in Jaccard index, showing that 

ransformer can be applied to the retinal vessel segmentation in 

CTA images. In addition, our proposed network outperforms other 

ompetitive methods in almost all evaluation metrics, especially in 

accard, Dice, CAL and LCC metrics 

To evaluate if the improvement is statistically significant, the 

ilcoxon signed-rank test is conducted on Jaccard index in all 

omparison experiments. It can be seen from Tables 1–4 that all 
8

 -values are less than 0.05, indicating that our OCT 2 Former has 

chieved a significant improvement compared to other networks 

n all three datasets. 

Fig. 7 shows the retinal vessel segmentation results of some 

f networks on three datasets. It can be seen from Fig. 7 that as

 powerful convolution based network in medical image segmen- 

ation, U-Net, performs well on thick vessel segmentation, while 

aving a poor performance on segmenting most of the thin ves- 

els. Compared with U-Net, CS-Net achieves better segmentation 

esults, but the connectivity of segmented vessels is poor. SCS- 

et equipped with scale-aware feature aggregation (SFA) module, 

daptive feature fusion (AFF) module and multi-level semantic su- 

ervision (MSS) module performs well on all three datasets. But 

ts segmentation performance of thin vessels with blurred bound- 

ries need to be improved, which is probably due to the de- 

rease of receptive field during the decoding process. iUNet, which 
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Table 4 

Comparison results on OCTA-3M dataset. 

Methods JAC DICE BACC PRE REC CAL LCC p-value 

U-Net [39] 82.88 ±3.47 90.60 ±2.16 94.91 ±1.38 - - - - - 

CS-Net[27] 83.43 ±3.56 90.92 ±2.21 95.33 ±1.60 98.79 ±0.24 91.34 ±3.24 85.03 ±5.24 87.74 ±1.09 < 0.001 

U-Net3 + [39] 83.41 ±3.36 90.92 ±2.08 94.57 ±1.43 - - - - - 

CE-Net [29] 83.33 ±3.34 90.87 ±2.06 94.41 ±1.65 98.80 ±0.23 89.34 ±3.34 84.28 ±5.46 88.84 ±0.98 < 0.001 

iUNet [44] 83.67 ±3.64 91.06 ±2.27 95.46 ±1.71 98.33 ±0.20 91.59 ±3.47 85.47 ±5.29 90.56 ±0.73 < 0.001 

MFI-Net [30] 82.15 ±2.57 90.15 ±1.59 93.68 ±1.71 99.10 ±0.31 89.01 ±2.04 83.40 ±5.66 88.41 ±1.28 < 0.001 

SCS-Net [31] 83.64 ±3.59 91.05 ±2.23 94.71 ±1.63 99.45 ±0.15 89.98 ±2.29 85.27 ±5.55 86.76 ±1.19 < 0.001 

AACA-MLA-D-UNet [32] 83.32 ±3.54 90.81 ±2.17 94.08 ±1.79 99.55 ±0.12 88.61 ±3.61 83.86 ±5.71 89.84 ±0.81 < 0.001 

Vessel-Net [33] 83.38 ±3.37 90.90 ±2.09 94.38 ±1.48 99.50 ±0.15 89.27 ±2.98 84.62 ±5.30 90.25 ±0.72 < 0.001 

TransUNet [49] 81.70 ±3.49 89.89 ±2.21 94.16 ±1.54 98.66 ±0.25 88.94 ±3.10 84.16 ±5.42 88.59 ±0.82 < 0.001 

UTNet [58] 83.76 ±2.44 91.12 ±2.11 95.47 ±1.37 98.81 ±0.24 91.59 ±2.76 85.10 ±5.13 90.04 ±0.91 < 0.001 

Swin-UNet [59] 73.14 ±4.19 84.42 ±2.87 90.96 ±1.69 97.96 ±0.34 82.84 ±3.47 72.30 ±6.33 65.30 ±1.57 < 0.001 

SegFormer [48] 80.67 ±3.57 89.25 ±2.33 93.51 ±1.83 99.38 ±0.15 87.63 ±3.71 83.74 ±5.86 82.21 ±1.09 < 0.001 

OCT 2 Former 85.13 ±3.39 91.93 ±2.06 95.46 ±1.59 98.94 ±0.21 91.45 ±3.23 87.94 ±5.25 92.68 ±0.60 - 

Missing indicators in cited literature are represented with ‘-’ 

Fig. 7. Retinal vessel segmentation results of the proposed OCT 2 Formerand other segmentation networks. From top to down, OCTA images of row1, 3, 5 and 7 come from 

OCTA-SS, ROSE-1, OCTA-6M and OCTA-3M, respectively. Row 2, 4, 6 and 8 show the corresponding locally zoomed-in OCTA images, ground truh and segmentation results. 
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tilizes an iterative approach to recurrently refine the segmenta- 

ion result, shows promising performance in preserving vessel con- 

ectivity, but it still faces challenges in thin vessel segmentation. 

E-Net and TransUNet have poor segmentation performance on 

hin vessels, because both of them use ResNet [61] as the back- 

one network, in which overmuch down-sampling operations lead 

o the lack of guidance from high-resolution feature and the chal- 

enge of thin vessel recovery. As a pure transformer based net, 

win-UNet performs poor because it could not converge the small 

atasets of OCTA images with limited training time (100 epochs). 

s a hybrid transformer network, the performance of UTNet has 
9

een greatly improved, but false negatives are still unavoidable 

ue to the lack of high-resolution global information. Our pro- 

osed OCT 2 Former, which is designed to obtain global information 

f each layer, achieves the best segmentation performance for thin 

essel and keeps the best connectivity of segmented vessels on all 

hree datasets. Table 5 shows the computational cost and the net- 

ork scale of the above networks. As can be seen from Table 5 ,

he proposed OCT 2 Former needs the least computational cost and 

as least network parameters among the transformer based and 

ybrid networks, except for the SegFormer (B1) that uses MLPs as 

he decoder and not performs well in the retinal vessel segmenta- 
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Table 5 

The FLOPs and parameters of different networks (with input size of 224 × 224). 

Methods Ours U-Net CS-Net U-Net3 + CE-Net iUNet MFI-Net SCS-Net 

AACA- 

MLA 

-D-UNet Vessel-Net TransUNet UTNet Swin-UNet SegFormer 

FLOPs/G 7.34 3.35 8.40 27.01 29.22 89.45 7.16 6.00 2.13 1.27 93.19 57.45 27.12 2.60 

Params/M 49.99 5.94 10.69 153.06 136.27 2.22 77.36 16.22 2.03 13.40 49.27 62.11 93.57 13.76 

Fig. 8. The loss curve of OCT 2 Former during the training process on OCTA-SS. ∗

represents training for 300 epochs. 
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ion task yet. Furthermore, considering comprehensively both seg- 

entation performance and computational cost and network scale, 

he proposed OCT 2 Former is also competitive with convolution 

ased networks such as CS-Net, which shows that the proposed 

CT 2 Former can process high-resolution information and obtain 

lobal information without excessive computational cost and pa- 

ameters, and can be applied to retinal vessel segmentation in a 

ore efficient way. 

.2. Ablation experiments 

.2.1. Ablation experiments about ACB 

In this section, exhaustive ablation experiments about the auxil- 

ary convolution branch (ACB) are designed and performed, which 

s proposed to speed up the convergence of OCT 2 Former. To ver- 

fy the convergence speed, two different training epochs (100 and 

00) are adopted. Fig. 8 shows the loss curves of OCT 2 Former dur- 

ng training with different settings on dataset OCTA-SS. As can be 

een from Fig. 8 , the training loss fluctuates greatly with the ab- 

ence of ACB and can hardly descend to the optimum level even 

fter 300 epochs, which in turn indicates the effectiveness and ne- 

essity of the ACB. The detailed ablation experimental results on all 

hree datasets are shown in Table 6 , which indicate that the inser- 

ion of ACB in the dynamic transformer encoder can not only speed 

p the convergence of the proposed OCT 2 Former, but also improve 

he segmentation performances on all three datasets for the major 

ndex Jaccard (all the p-values of Wilcoxon signed-rank test on Jac- 

ard index are less than 0.05, indicating that there is a statistically 

ignificant difference between OCT 2 Former w/o ACB + 100 epochs 

nd OCT 2 Former + 100 epochs). The main reason is that transformer 

acks inductive bias and requires a lot of training to learn the bias, 

hich leads to the slow convergence on small datasets. In the case 

f limited training time (100 epochs), the network is difficult to 

onverge to the global optimum. However, when trained for 300 

pochs, the performers of OCT 2 Former without ACB (OCT 2 Former 
10 
/o ACB + 300 epochs) are close to OCT 2 Former + 100 epochs (all

he p-values of Wilcoxon signed-rank test on Jaccard index are 

reat than 0.05, indicating that there is no statistically signifi- 

ant difference between OCT 2 Former w/o ACB + 300 epochs and 

CT 2 Former + 100 epochs), which proves that the dynamic token 

ggregation transformer plays the leader role and ACB plays an 

uxiliary role in the proposed dynamic transformer encoder. 

.2.2. Ablation experiments about the structure of decoder path 

Convolution based lightweight decoder (LD) is designed to con- 

truct the decoder path, which can not only recover the feature 

esolution efficiently, but also reduce the number of network pa- 

ameters. In order to verify the rationality of this design, the ab- 

ation experiments about the structure of decoder path are con- 

ucted. Fig. 9 shows five different structures of decoder path. 

tructure (a) is the one adopted in our proposed OCT 2 Former. Each 

ecoder layer of (b) consists of two cascaded LDs (same as the de- 

oder layer of U-Net [60] ). (c) is a representative of dense connec- 

ion decoder (DCD) path (same as the decoder path of U-Net3 + 

57] , which performs best in the convolution based networks). (d) 

s a representative of deep supervision decoder (DSD), which is 

imilar with the decoder path in MFI-Net [30] . The decoder path of 

e) is constructed by the symmetrical transformer (ST) structure in 

he encoder path (similar to Swin-UNet [59] ). As shown in Table 7 ,

here are no statistical significances between the segmentation 

erformances of the OCT 2 Former with these different five decoder 

aths (all the p-values of Wilcoxon signed-rank test on Jaccard in- 

ex are greater than 0.05), while the proposed OCT 2 Former with 

LD based decoder path (structure (a)) needs the least computa- 

ional cost and parameters, which indicates that the structure of 

he decoder path has little influence on our proposed hybrid trans- 

ormer network. The main reasons are: (1) the convolution based 

etworks usually rely on down-sampling to enlarge the receptive 

eld and acquire more advanced semantic features, and therefore 

eed more complex decoders to fuse features from different layers 

ith different receptive fields; (2) our OCT 2 Former has the ability 

o acquire the global receptive field from each layer, which means 

hat the features from each encoder layer are sufficient for the di- 

ect information recovery with simple decoder structure. 

.2.3. Ablation experiments about DTA algorithm 

To further investigate the settings of iteration number T and ag- 

regation embedding length k in DTA algorithm, the corresponding 

blation experiments are conducted on OCTA-SS dataset. As shown 

n Table 8 , the performance of our OCT 2 Former is poor when T = 1.

his is because the limited learning ability of the network, which 

akes it difficult to aggregate embedding in single step to learn 

nough information from the original embedding. With the in- 

rease of number of iterations, the performance of our OCT 2 Former 

s greatly improved, tending to be converged when T = 3. Fig. 10 

hows the changes of the main indexes including JAC and CAL 

ith the number of iterations, which clearly indicates that T = 3 is 

he optimal choice for our proposed DTA algorithm. Theoretically, 

hen the number of iterations increases, the aggregation embed- 

ing information becomes more effective and abstract. However, 

ue to the use of softargmax in DTA algorithm, the gradient tends 
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Table 6 

Results of ablation study about ACB. 

Dataset Method 100 epochs 300 epochs JAC DICE BACC PRE REC CAL LCC p-value 

OCT 2 Former w/o ACB 
√ × 8 2.87 ±3.01 90.61 ±2.34 92.17 ±1.93 92.72 ±3.05 91.33 ±2.59 90.37 ±3.18 93.11 ±1.89 < 0.001 

OCTA-SS OCT 2 Former w/o ACB × √ 

83.15 ±1.74 90.79 ±1.11 92.52 ±1.41 92.71 ±2.12 93.24 ±2.54 91.69 ±3.21 95.80 ±2.10 0.162 

OCT 2 Former 
√ × 8 3.44 ±1.85 90.96 ±1.10 92.64 ±1.60 92.95 ±1.97 92.34 ±2.63 91.52 ±2.56 96.05 ±2.24 - 

OCT 2 Former w/o ACB 
√ × 7 7.54 ±2.41 87.33 ±1.87 92.87 ±1.74 96.48 ±0.59 87.86 ±3.76 74.79 ±4.54 79.64 ±1.93 < 0.001 

ROSE-1 OCT 2 Former w/o ACB × √ 

78.28 ±2.01 87.81 ±1.29 93.22 ±1.67 96.60 ±0.62 88.53 ±3.61 76.78 ±4.12 81.10 ±1.30 0.088 

OCT 2 Former 
√ × 7 8.55 ±2.15 87.97 ±1.35 93.12 ±1.65 96.67 ±0.55 88.20 ±3.55 76.86 ±4.23 81.30 ±1.23 - 

OCT 2 Former w/o ACB 
√ × 8 0.59 ±3.21 89.19 ±2.64 93.58 ±1.56 98.04 ±0.66 88.12 ±3.11 82.64 ±5.01 87.51 ±1.65 < 0.001 

OCTA-6M OCT 2 Former w/o ACB × √ 

80.81 ±1.67 89.33 ±2.01 93.72 ±1.51 98.07 ±0.76 88.42 ±2.79 84.44 ±4.97 88.61 ±1.55 0.144 

OCT 2 Former 
√ × 8 0.99 ±1.77 89.45 ±2.15 94.11 ±1.45 98.06 ±0.68 89.27 ±2.92 84.24 ±5.17 88.80 ±1.34 - 

OCT 2 Former w/o ACB 
√ × 8 4.32 ±3.53 91.45 ±2.23 95.55 ±1.51 98.86 ±0.30 91.74 ±2.98 86.21 ±5.12 90.87 ±1.02 < 0.001 

OCTA-3M OCT 2 Former w/o ACB × √ 

84.77 ±3.41 91.72 ±2.12 95.49 ±1.63 98.91 ±0.16 91.55 ±3.17 88.11 ±4.95 92.78 ±0.71 0.091 

OCT 2 Former 
√ × 8 5.13 ±3.39 91.93 ±2.06 95.46 ±1.59 98.94 ±0.21 91.45 ±3.23 87.94 ±5.25 92.68 ±0.60 - 

Fig. 9. OCT 2 Former with different decoder structures. (a) single LD (default setting); (b) double LD; (c) decoder of UNet3 + ; (d) deep supervision decoder; (e) symmetrical 

decoder based on dynamic transformer. 

Table 7 

Results of ablation study about the structure of decoder path (LD: lightweight decoder, DCD: dense connection decoder, DSD: deep supervision decoder, ST: symmetrical 

transformer). 

Dataset Decoder setting JAC DICE BACC PRE REC CAL LCC p-value 

1 LD(default setting) 83.44 ±1.85 90.96 ±1.10 92.64 ±1.60 92.95 ±1.97 92.34 ±2.63 91.52 ±2.56 96.05 ±2.24 - 

2 LDs 83.21 ±1.75 90.82 ±1.05 92.51 ±1.55 92.91 ±1.89 92.44 ±2.74 90.92 ±3.32 94.59 ±2.95 0.820 

OCTA-SS DCD 83.11 ±1.95 90.75 ±1.19 92.37 ±1.72 92.91 ±1.95 91.68 ±2.91 91.63 ±2.72 96.13 ±2.41 0.810 

DSD 83.19 ±1.63 90.80 ±0.99 92.65 ±1.59 93.15 ±2.01 92.23 ±2.74 91.59 ±2.40 96.05 ±2.31 0.856 

ST 83.24 ±2.02 90.83 ±1.25 92.49 ±1.81 92.94 ±1.85 92.15 ±2.56 91.51 ±2.52 96.15 ±2.33 0.919 

1 LD(default setting) 78.55 ±2.15 87.97 ±1.35 93.12 ±1.65 96.67 ±0.55 88.20 ±3.55 76.86 ±4.23 81.30 ±1.23 - 

2 LDs 78.31 ±2.36 87.82 ±1.51 93.63 ±1.44 96.57 ±0.56 89.57 ±3.45 75.99 ±4.52 80.82 ±1.31 0.782 

ROSE-1 DCD 78.39 ±2.21 87.87 ±1.49 93.41 ±1.63 96.63 ±0.49 88.98 ±3.51 76.79 ±4.19 81.21 ±1.31 0.813 

DSD 78.35 ±2.57 87.85 ±1.42 93.59 ±1.53 96.75 ±0.45 89.01 ±3.66 76.63 ±4.58 81.35 ±1.34 0.821 

ST 78.51 ±2.05 87.94 ±1.36 93.23 ±1.71 96.66 ±0.61 89.66 ±3.61 76.52 ±3.99 81.05 ±1.40 0.927 

1 LD(default setting) 80.99 ±1.77 89.45 ±2.15 94.11 ±1.45 98.06 ±0.68 89.27 ±2.92 84.24 ±5.17 88.80 ±1.34 - 

2 LDs 80.96 ±1.73 89.42 ±2.30 93.96 ±1.67 98.07 ±0.71 88.92 ±2.81 84.14 ±4.98 88.56 ±1.41 0.899 

OCTA-6M DCD 80.93 ±1.69 89.40 ±2.41 94.07 ±1.41 98.06 ±0.68 89.17 ±2.91 84.01 ±4.81 88.64 ±1.43 0.909 

DSD 80.79 ±1.54 89.21 ±2.25 94.21 ±1.77 98.10 ±0.61 88.71 ±3.15 84.08 ±5.12 88.69 ±1.52 0.784 

ST 80.84 ±1.80 89.34 ±2.23 93.91 ±1,59 98.06 ±0.58 88.84 ±2.92 84.19 ±5.03 88.77 ±1.37 0.765 

1 LD(default setting) 85.13 ±3.39 91.93 ±2.06 95.46 ±1.59 98.94 ±0.21 91.45 ±3.23 87.94 ±5.25 92.68 ±0.60 - 

2 LDs 84.76 ±3.61 91.72 ±2.19 95.10 ±1.60 98.91 ±0.31 90.70 ±3.10 87.64 ±5.10 92.58 ±1.02 0.501 

OCTA-3M DCD 84.94 ±3.41 91.81 ±2.09 95.40 ±1.55 98.91 ±0.29 91.39 ±3.15 87.85 ±5.42 92.50 ±1.05 0.883 

DSD 84.77 ±3.62 91.72 ±2.23 95.56 ±1.51 99.03 ±0.19 90.59 ±3.25 87.89 ±5.23 92.61 ±0.82 0.789 

ST 84.85 ±3.45 91.76 ±2.11 95.31 ±1.69 98.92 ±0.36 91.16 ±3.29 87.96 ±5.30 92.71 ±0.91 0.725 

Table 8 

Ablation experiments on iteration number T in DTA 

algorithm. 

T JAC BACC CAL 

1 80.05 91.67 87.83 

2 82.15 92.11 89.78 

3 83.28 92.41 91.52 

4 83.12 92.49 91.47 

5 83.11 92.48 91.39 

6 83.22 92.36 91.40 

t

f

t

o

o

e

e

t

11
o decrease during iteration, which may lead to the amount of in- 

ormation retained by the aggregated embedding not increase con- 

inuously. 

Table 9 and Fig. 11 show the ablation experiments on the length 

f the aggregation embedding k . When k = 16, the performance of 

ur OCT 2 Former is poor, which is mainly because the aggregation 

mbedding has insufficient aggregation capacity for the original 

mbedding, resulting in the inability of the attention mechanism 

o capture important relationships between distant pixel locations. 
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Fig. 10. Visualization of iteration number T in DTA algorithm. 

Table 9 

Ablation experiments on aggregation length k in DTA 

algorithm. 

k JAC BACC CAL 

16 77.90 91.12 87.41 

32 79.41 91.55 88.01 

64 81.62 91.82 91.01 

128 83.28 92.41 91.52 

256 82.97 92.41 91.44 

512 82.64 92.03 91.39 

Fig. 11. Visualization of aggregation embedding length k in DTA algorithm. 
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Table 10 

Comparison results on ROSE-1(DVC) dataset. 

Methods AUC DICE 

U-Net [37] 91.86 66.05 

CE-Net [37] 95.05 57.83 

CS-Net [37] ] 96.71 58.84 

CGNet [64] 96.41 67.36 

OCTA-Net [37] 96.73 70.74 

Ours 96.99 71.99 

Table 11 

Comparison results on ROSE-2 dataset. 

Methods AUC DICE 

U-Net [37] 83.70 65.64 

CE-Net [37] 84.67 70.66 

CS-Net [37] 85.42 70.10 

CGNet [64] 85.62 68.86 

OCTA-Net [37] 86.03 70.77 

Ours 86.18 71.35 
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he aggregation capability of the network increases gradually with 

he increase of k , and reaches an optimal value when k = 128, in-

icating that aggregation embedding can effectively represent the 

riginal embedding now. The further increase of k does not im- 

rove the performance, possibly because the redundant informa- 

ion is already present in the aggregation embedding. Therefore, 

e conclude that the performance of the network will not be sig- 

ificantly improved even if k is increased to the length of the orig- 

nal embedding N , which is the main basis for our design of the 

TA algorithm. 

.3. Generalization experiments 

In order to evaluate the generalization ability of our proposed 

CT 2 Former, additional experiments on two datasets including 

OSE-1 (DVC) and ROSE-2 [37] with centerline vessel ground truth 

re conducted. Area under ROC curve (AUC) and DICE are adopted 

o evaluate the performance of the centerline segmentation, which 

re the same ones in Reference [37] . Specifically, a three-pixel tol- 

rance region around the manually traced centerlines is considered 

s a true positive in our evaluation which is consistent with Refer- 

nce [37] . 

Tables 10 and 11 show the results of different segmentation 

etworks on ROSE-1 (DVC) and ROSE-2. As shown in Tables 10 
12 
nd 11 , our OCT 2 Former outperforms other state-of-the-art net- 

orks. Specifically, our OCT 2 Former achieves a 1.25% improvement 

n ROSE-1(DVC) dataset and a 0.58% improvement on the ROSE2 

ataset for DICE index, comparing to the second-best OCTA-Net, 

hich indicates that our OCT 2 Former is not only capable of pixel- 

evel vessel segmentation but also suitable for the centerline seg- 

entation. 

.4. Discussion about the receptive field 

The receptive field plays a crucial role in semantic segmenta- 

ion, which allows the network to extract of both abstract seman- 

ic information and internal topological structures. In the retinal 

essel segmentation task, a large receptive field is particularly im- 

ortant as the retinal vessels are characterized by the tree-like 

opological structure where the thick vessels are usually connected 

ith several thin vessels. That is, the integrity and connectivity of 

hick and thin vessels should be considered during the segmenta- 

ion, which requires a large receptive field. 

Previous CNN-based retinal vessel segmentation networks typ- 

cally utilize convolution layers as the encoder, which usually re- 

uire to deepen the layers of the network or use dilated convo- 

ution to increase the receptive field. However, with the increase 

f the layers, the extracted features become more abstract and the 

eatures for thin vessels may disappear. Our proposed OCT 2 Former 

an obtain global receptive field from each layer, allowing for com- 

rehensive segmentation of both thick and thin vessels. Effective 

eceptive field (ERF) [48] is adopted to show the receptive fields of 

-Net, SCS-Net and our proposed OCT 2 Former (average over 100 

mages from the test set of OCTA-6M). As shown in Fig. 12 , the re-

eptive field of U-Net increases with the increase of the encoder 

ayers. SCS-Net adds a dilated convolution based SFA module at 

he bottleneck of the encoder, which increases the receptive field 

f the bottom feature. However, due to the layer-by-layer feature 

usion via up-sampling in the decoder path, the receptive field of 

-Net and SCS-Net at the output layer is still small. On the con- 

rary, the proposed OCT 2 Former has a global receptive field in each 

ayer, especially in the output layer which is vital for the thin ves- 

el segmentation and can improve the integrity and connectivity of 

he segmented vessels. As shown in Fig. 6 (c), since the images in 

CTA500-6M are centered on the fovea (non-perfusion area) and 

he retinal vessels are distributed around it, the global receptive 

eld of our OCT 2 Former can adapt to focus on the vessels instead 

f the fovea. 
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Fig. 12. Effective receptive field of U-Net, SCS-Net and the proposed OCT 2 Former 

(average over 100 images from the test set of OCTA-6M). 
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. Conclusion 

In this paper, a novel end-to-end hybrid transformer based reti- 

al vessel segmentation network named as OCT 2 Former is pro- 

osed, in which transformer is first introduced and improved for 

etinal vessel segmentation in OCTA images. In order to efficiently 

pply transformer to retinal vessel segmentation, a dynamic to- 

en aggregation transformer is proposed to reduce the huge com- 

utational cost of the original transformer, and an auxiliary con- 

olution branch is designed to speed up the convergence of the 

riginal transformer. The convolution based lightweight decoder is 

dopted to construct the decoder path, which can reduce the com- 

utational cost and parameters of the OCT 2 Former while keeping 

he overall good performance. The proposed OCT 2 Former is eval- 

ated and on OCTA-SS, ROSE-1, OCTA-500 (subset OCTA-6M and 

ubset OCTA-3M) datasets and the results indicate that the pro- 

osed OCT 2 Former outperforms other state-of-the-art networks. 

Although our proposed OCT 2 Former performs well on the 2D 

CTA images, there are still several limitations that should be ad- 

ressed in future work. First, we have not fully exploited the spa- 

ial information in 3D OCTA volumes, which is of great significance 

o retinal vessel segmentation. To make full use of 3D spatial infor- 

ation and further improve the segmentation performance of the 

roposed framework, we will focus on exploring the combination 

f 3D feature extraction and 2D segmentation network, trying to 

se 3D information to guide the segmentation of 2D retinal ves- 

els. Additionally, we will try to extend our network for OCTA im- 

ges with quality degradation such as projection and motion arti- 

acts, and other curvilinear structure segmentation such as nerve 

ber segmentation in corneal confocal microscopy (CCM) images 

62] and retinal linear lesion segmentation in indocyanine green 

ngiography (ICGA) images [63] . 

Second, our OCT 2 Former has not been fully explored in the in- 

orporation of the multi-scale information, which can be benefi- 

ial to further improve the segmentation performance. In the fu- 

ure work, we will try to explore the integration of the multi-scale 

okens into our proposed OCT 2 Former. 

Third, although the overall segmentation performance of our 

CT 2 Former is good, there are still false positives and false neg- 

tives for the vessels with very blurred boundaries, which is the 

ommon challenge in medical image segmentation. To alleviate the 

lurred boundary issue, we will try to explore the boundary-aware 

oss function as auxiliary supervision in the future work. 
13
Furthermore, the limited amount of training data may lead to 

he overfitting of the proposed OCT 2 Former. We will work on ways 

uch as self-supervision and meta-learning strategies to reduce the 

etwork’s dependence on large amounts of training data and fur- 

her improve the performance of the proposed OCT 2 Former. We 

ill also explore our OCT 2 Former for the subsequent clinical appli- 

ations, e.g., the fractal dimension analysis on the detected vessels 

etween disease groups and normal controls. 
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