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Abstract

Background: Choroid neovascularization (CNV) has no obvious symptoms in
the early stage, but with its gradual expansion, leakage, rupture, and bleeding, it
can cause vision loss and central scotoma. In some severe cases, it will lead to
permanent visual impairment.

Purpose: Accurate prediction of disease progression can greatly help oph-
thalmologists to formulate appropriate treatment plans and prevent further
deterioration of the disease. Therefore, we aim to predict the growth trend of
CNV to help the attending physician judge the effectiveness of treatment.
Methods: In this paper, we develop a CNN-based method for CNV growth pre-
diction. To achieve this, we first design a registration network to rigidly register
the spectral domain optical coherence tomography (SD-OCT) B-scans of each
subject at different time points to eliminate retinal displacements of longitu-
dinal data. Then, considering the correlation of longitudinal data, we propose
a co-segmentation network with a correlation attention guidance (CAG) mod-
ule to cooperatively segment CNV lesions of a group of follow-up images and
use them as input for growth prediction. Finally, based on the above registration
and segmentation networks, an encoder-recurrent-decoder framework is devel-
oped for CNV growth prediction, in which an attention-based gated recurrent
unit (AGRU) is embedded as the recurrent neural network to recurrently learn
robust representations.

Results: The registration network rigidly registers the follow-up images of
patients to the reference images with a root mean square error (RMSE) of
6.754 pixels. And compared with other state-of-the-art segmentation methods,
the proposed segmentation network achieves high performance with the Dice
similarity coefficients (Dsc) of 85.27%. Based on the above experiments, the
proposed growth prediction network can play a role in predicting the future CNV
morphology, and the predicted CNV has a Dsc of 83.69% with the ground truth,
which is significantly consistent with the actual follow-up visit.

Conclusion: The proposed registration and segmentation networks provide the
possibility for growth prediction. In addition, accurately predicting the growth of
CNV enables us to know the efficacy of the drug against individuals in advance,
creating opportunities for formulating appropriate treatment plans.

KEYWORDS
choroid neovascularization, growth prediction, optical coherence tomography, registration,
segmentation
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MORPHOLOGICAL PROGNOSIS PREDICTION OF CHOROID

2 | MEDICAL PHYSICS
1 | INTRODUCTION

Choroid neovascularization (CNV) is caused by the pro-
liferation of blood vessels in the choroid, which mostly
occurs in the macula. With the expansion or leakage of
CNV,retinal pigment epithelium (RPE) layer detachment,
and vitreous or retinal hemorrhage will be caused, result-
ing in serious visual loss.! Many fundus diseases can
lead to the formation of CNV, of which age-related mac-
ular degeneration (AMD) and pathological myopia (PM)
are the two main causes.®?

At present, intravitreal injection of anti-vascular
endothelial growth factor (VEGF) drugs has become an
important way to treat CNV* These drugs can inhibit the
growth of CNV by binding and blocking VEGF receptors,
reducing vascular permeability and the fluid area below
the RPE layer. There are two schemes for the injection
of anti-VEGF drugs. One is Pro Re Nata (PRN) scheme,
that is, one injection per month. After three consecutive
injections, whether to continue the injection is deter-
mined according to the patient’s condition. The second
is the T&E (Treat and Extend) scheme, that is, one injec-
tion per month. After three consecutive injections, the
injection interval will be gradually extended according
to the state of CNV. The datasets used in this paper
adopt the first injection scheme. Theoretically, this treat-
ment method is feasible, but in fact, its curative effect
varies from person to person. The high-frequency injec-
tion of anti-VEGF drugs and the high cost bring a huge
burden to patients. Moreover,intraocular injection is inva-
sive and may cause some serious side effects, such as
intraocular inflammation .

Functional imaging plays an important role in today’s
diagnosis and treatment, promoting the rapid devel-
opment of ophthalmic imaging technology. Among
them, fundus fluorescein angiography (FFA), indocya-
nine green angiography (ICGA), optical coherence
tomography (OCT), and optical coherence tomography
angiography (OCTA) can be used to diagnose CNV®
The application of various auxiliary examinations not
only improves the diagnostic accuracy of CNV but also
provides a basis for the follow-up treatment plan. OCT
is divided into time domain OCT and frequency domain
OCT, where frequency domain OCT is divided into spec-
tral domain optical coherence tomography (SD-OCT)
and swept source optical coherence tomography (SS-
OCT). SD-OCT has a fast imaging speed, providing
three-dimensional reconstruction images of the retina
with micron resolution, and revealing detailed infor-
mation about retinal pathological changes. In current
clinical practice, SD-OCT equipment is more commonly
used to evaluate the retinal morphological changes for
follow-up.” Figure 1 shows the OCT image slice taken
by Heidelberg Spectralis OCT. The macular region of
CNV patients is usually accompanied by the generation
of subretinal fluid (SRF) and intraretinal fluid (IRF), as
shown in Figure 1b.

FIGURE 1 Examples of optical coherence tomography (OCT)
image slice. (a) Macular region image of normal human eyes. (b)
Macular region image of choroid neovascularization (CNV) patients
caused by age-related macular degeneration (AMD). IRF, intraretinal
fluid; SRF, subretinal fluid.

In recent years, many studies have been carried out
on CNV due to its great damage to vision. Specifi-
cally, there have been some studies on retinal OCT
registration.®~' However, these methods are unsuitable
for data with serious pathologies, such as CNV. For
example, Pan et al.'" proposed a feature-based 3D reg-
istration method that can be used for both normal retinal
OCT data and serious pathological OCT data. After the
segmentation of seven retinal surfaces, they designed
an intensity-based region feature, surface-based struc-
ture feature, and vessel-like feature for the registration.
This method achieves high registration accuracy and
can be extended to other pathological cases. Neverthe-
less, deformable registration will deform the lesion area,
making it more similar to the reference image, which is
contrary to our goal of growth prediction.

Most of the work focused on CNV lesion region
segmentation’?'* and retinal layers segmentation®:6
in the past. Accurately segmenting the lesion area of
CNV can quantify the area, volume, width, height, opti-
cal density value, and other properties of CNV. Using
these quantitative characteristics, ophthalmologists can
accurately evaluate the state and treatment effect of
CNV, study the pathological characteristics of CNV, and
design a more effective treatment plan.

Furthermore, automatic prediction for CNV cases has
been applied in clinical trials. For example, Banerjee
et al."” proposed a mixed sequence prediction model.
Combined with the longitudinal OCT imaging radiology
characteristics, demographics, and visual factors, the
model can predict the probability of exudation in the
eyes of patients in the short-term (within 3 months)
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FIGURE 2 Overall flow chart of the proposed scheme.

and long-term (within 21 months) in the future. Zuo
Chang et al."”® combined the reaction-diffusion model
with the hyperelastic biomechanical model to predict
the growth morphology and volume changes of CNV
after anti-VEGF treatment. However, their model only
focuses on the independent changes of individual lesion
areas, and cannot learn the CNV growth pattern in
the whole study population. In addition, the optimiza-
tion algorithm is very time-consuming, and the accuracy
of prediction needs to be further verified on a large
dataset.Recently, Zhang et al."® proposed a lesion atten-
tion map guidance network based on three-dimensional
SD-OCT images, where they aimed to automatically
predict the CNV volume of the next follow-up after treat-
ment. Different types of CNVs caused by AMD and
PM, and OCT images taken by different devices (Zeiss
and RTVue) are used to test the performance of the
network. The mean absolute error (MAE) between the
predicted volume and the actual volume is 0.067 mm?,
0.112 mm?3, and 0.070 mm?3 respectively, which has reli-
able prediction performance. It is worth noting that using
a classification network to generate CNV attention maps
requires high image quality and obvious CNV character-
istics. However, the data taken by most hospitals do not
meet these two conditions. They usually have a lot of
noise, and the CNVs have different shapes or blurred
boundaries.

Based on the above research results, we proposed the
whole process of the CNV growth prediction method.
The major contributions of this paper can be summa-
rized as follows:

1. A rigid registration network based on key points is
proposed to register the follow-up images of patients
to the reference images, which can eliminate the
offset of the longitudinal data in a competitive time.

2. The follow-up images of each patient at four-
time points are segmented collaboratively by
our proposed co-segmentation model. In the co-
segmentation model, we also designed the CAG
module. It is used to enhance common abstract
features and suppress other irrelevant seman-
tic information so that the module can guide the
segmentation of the next time point image.

3. We use the reference image, the examination OCT
images after the first injection, and after the sec-
ond injection to predict the CNV morphology of the
third injection. In the growth prediction model, we
develop the AGRU module to recurrently learn robust
representations from the spatial-temporal sequence.

Results show that the predicted CNV is significantly
consistent with the actual follow-up visit.

2 | METHODS

21 | Overview

To predict the effect of three injections of anti-VEGF
drugs, we have proposed a complete pipeline, the pro-
cess is shown in Figure 2. For each patient’s follow-up
images, the following four steps are taken to achieve this
goal: preprocessing, longitudinal data registration, longi-
tudinal data co-segmentation, and CNV growth predic-
tion. A detailed description and functional interpretation
of the proposed method are provided below.

2.2 | Preprocessing

Firstly, we conduct anisotropic filtering on these OCT
images due to their large speckle noise. Secondly, the
boundary of the retinal layers, namely the inner limiting
membrane (ILM) layer and the RPE layer, are seg-
mented to extract the volume of interest (VOI). However,
some lesion areas are too large and their shadows cover
the choroid, making it difficult to segment the RPE layer
automatically. Therefore, the position of the RPE layer
is manually adjusted with the help of OCT-Explorer?®
a software specially used for retinal layer segmentation.
The results are shown in Figure 3.

2.3 | Registration

If there is an offset or rotation between two OCT vol-
ume scans, the frame at the corresponding positions
of the two OCT volumes will not correspond to the
same position on the retina, which severely affects the
final growth prediction accuracy. Given this situation,
to guarantee the CNV growth prediction accuracy, it
is necessary to solve the offset of the longitudinal
data and keep the CNV area at the same position.
Therefore, we need to register the follow-up OCT
images to the first-time point. Considering that non-rigid
registration may affect the shape and size of CNV,
rigid registration is adopted in this paper. In addition,
classical registration methods based on intensity simi-
larity are sensitive to speckle noise which is commonly
found in OCT images.!” Hence, a registration net-
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FIGURE 4 Regression network architecture.

work based on key points is proposed, as shown in
Figure 3.

During training, the fixed image (/), the moving image
(Im), and their corresponding key points are input into a
regression network. Usually, points with obvious features
are selected as key points, but these key points can-
not be accurately matched with pathological changes
in follow-up images. Therefore, we selected 4 points
on the RPE layer as the key points, and the values
of abscissa are 102, 204, 306, and 408 respectively. In
addition, the ordinate values can be calculated from the
preprocessed images. In fact, two key points can deter-
mine the parameters of rigid registration. Here, to align a
group of images to be registered on the RPE layer, two
additional points on the RPE layer are taken for con-
straint, so as to avoid the situation that two groups of

key points are aligned but the RPE layer is not aligned.

The regression network uses ResNet-182" as its feature
extractor, as shown in Figure 4.

conv3 1
conv3 2

conv4 1
conv4 2

conv5 1 fcl fe2
conv5 2

After that, three transformation parameters are
obtained: the rotation angle 6, the horizontal transla-
tion T, and the vertical translation T,. These three
parameters constitute the rigid transformation matrix T,

_ |cos (6) —sin (8) xg — xg cos (6) + ypsin(8) + T,
"7 | sin (6) cos(6) yo—xosin(6) —ypcos (@) + T,
(1)

where (xg, ¥p) is the coordinate of the center point of the
moving image. Transform the key points (x", y!") of the
moving image according to the following formula to get
the transformed key points (x!, y/):

r X"
]
<Xf>=T;1 yrli=1,234 )
1
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FIGURE 5 An overview of the proposed network for choroid neovascularization (CNV) co-segmentation. It contains three parts: Siamese
encoder, correlation attention guidance (CAG) module, and Siamese decoder.

The loss function is defined as the root mean square
error (RMSE) between (x/, y/) and (x/, y/):

4 f_ r2 f_ r2
Loss=¢z"=1((x" 0D+ =y @)

4

Finally, the registered image is obtained by resam-
pling the moving image. There is no need for key points
during the test phase, only the fixed image and the
moving image need to be input, and the transformation
parameters can be automatically regressed to generate
the registered image. Then, the registered CNV mask is
acquired by implementing the same transformation on
the moving image and moving mask, which prepares
the input for the next step of co-segmentation.

24 | Co-segmentation

To study the growth process of CNV, we need to seg-
ment the registered images and extract the interested
CNV lesion regions, which can be used as input for
growth prediction. CNV segmentation is a very impor-
tant step, because the segmentation results directly
affect the accuracy of growth prediction results. Here,
we designed a co-segmentation network to achieve this,
as shown in Figure 5. Our model is mainly composed
of three parts: Siamese encoder, correlation attention

guidance (CAG) module, and Siamese decoder, where
Siamese encoder and Siamese decoder are weight
sharing. The former is used to extract spatial features
from the input image, while the latter is adopted to gener-
ate the segmentation map from the features. In addition,
the CAG module is designed to obtain the co-attention
of two input images and apply it to the second feature
map, as shown in Figure 6.

Firstly, we use I to represent the reference image of
each patient, and the three follow-up images after reg-
istration are represented by /4, I, and I3, respectively.
These four images are integrated into a group as the
input of the network. In the proposed method, ResNet-
3422 js adopted as the backbone of the feature encoder,
which retains four feature-extracting blocks without the
average pooling layer and the fully connected layer. The
feature maps generated by the encoder are denoted as
Fq,F1,F>,and F3 and, the adjacent features among them
are then input into the CAG module respectively, which
is illustrated in Figure 6.

Supposing that the input feature map is F4 € RGHW
and Fg € RGHW where C, H, W represent the chan-
nel numbers, height, and width of the input feature. As
can be seen from Figure 6, the proposed CAG module
mainly consists of six steps:

1. To reduce the dimension of weights and speed up the
computations, the input frames are passed through
a dimension reduction layer, which includes 1 x 1
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FIGURE 6 The illustration of the
correlation attention guidance (CAG) module.
| F, and Fg represent the pair of the input
feature map. Mjcc is a comparison matrix,
which is obtained by calculating the
normalized cross correlation (NCC) of each
pixel on the pair of feature maps. By
performing the above operations, we can get

@reshapeu

1
1
1
1
1
1
1
1
1
1
:
1
] the attended feature map Fy.
i
1
1
1
1
1
1
1
1
1
1
1

=9

' C/2,H,W
E M*W,H*W

convolution, batch normalization, and RelLU. In this
way, we can get the feature maps of dimension
C/2 x H x W as the output.

2. We reshape and transpose F4 to Fug € R7*W.C/2)
and reshape Fg to Fgr € RC/2H:W,

3. Calculating the comparison matrix Mycc €
RHWHW hetween Fur and Fgg to compare the
local descriptor at every spatial location (i, j). Here,
the comparison is carried out using normalized cross
correlation (NCC) since it is more robust than a
simple correlation?®> And then apply a softmax layer,
as follows:

far (i) — far

1 «C/2 L
2 jio(fAR(’;/)_fAR)

Mycc = softmax

2

. for (1) — for @

2
1 <HW L
Ty i =0 (fBR(I, /)_fBR>

where f,r(/, j) represents the pixel value at (i, ) in fea-
ture map Fg, % represents the average pixel value of
feature map Fag, fgr(j, i) represents the pixel value at
(j, i) in feature map Fgg, and @ represents the average
pixel value of feature map Fgg.

4. Then, a matrix multiplication between Fgr and the
transpose of Mycc is performed to reshape and
upsample the result to RS We multiply the result
by a scale parameter a and perform an element-wise
sum operation with the feature map Fg to obtain the
spatial attention output E € RGHW  as follows:

E=aqa Z(FBRMNCC) +Fp )

l

5. In the channel attention step, we apply Global Aver-
age Pooling (GAP) on the feature map Fj4, and the
result feature map is passed through a Multi-Layer
Perceptron (MLP) followed by a sigmoid activation
function to get the channel weight. By performing
channel-wise multiplication with the channel weight
and the feature map Fg, we can get the channel
attention output T € RGHW:

T = Fg %a(MLP (GAP (F)) (6)

It is worth noting that if F4 does not have high activation
in channel i, Fg will not be activated in channel i since
this channel activation is initially small.

6. Finally,an element-wise summation operation is done
between E and T to generate the attended feature
map F'g € RGAW:

Fg= E+T 7)

It can be seen from the above operations that the
proposed CAG module is a channel spatial attention
architecture. Although GAP can extract global informa-
tion from the feature map, spatial information will be lost
due to its pooling operation. To this end, we calculate
the correlation of the feature maps as the spatial atten-
tion to improve the segmentation performance. Since
the follow-up images to be segmented are registered,
their appearance and position are related to a certain
extent. Therefore, the CAG module can learn the syn-
ergetic relationships between image pairs to suppress
noise information, like the irrelevant background and
non-common objects.

Processed by the CAG module, we can obtain the
attended feature map F'4, F'5, F'3, and the origin fea-
ture map Fp, and input them to the decoder. The decoder
aims to recover the high-level semantic features from
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Fo, F'4, F'5,and F’3, so we choose to use deconvolu-
tion as the upsampling method, which mainly consists
of a 1 x 1 convolution, a 3 x 3 deconvolutionanda 1 x 1
convolution consecutively. In addition, the skip connec-
tion is added to the network to integrate some detailed
information from the encoder to the decoder. Finally, the
decoder output 4 prediction masks: Py, P4, P>, and Ps,
with the same size as the input.

A joint loss Lgjge is adopted to measure each pre-
diction mask P; and its corresponding ground truth Y;,
which consists of Dice loss Lp,e and binary cross-
entropy loss Lgck:

Lsingle = Lpjce +Lpce (8)
where,
2 |PxY]
Lpjge= 1— =210 9
Dice |P| + |Y| ( )

Lece = — ). (1=Y)log(1—=P)+ Yiog(P)  (10)

hw

where P and Y are the segmentation results and their
corresponding ground truth, h and w are the coordinates
of the pixel in P and Y. Obviously, Lpj.e and Lgce are
able to optimize the model at image level and pixel level,
respectively. The total loss function combining the four
single loss functions is as follows:

I

Liotal = 2 single (Pi: Y) (11)

2.5 | Growth prediction

Based on the above registration and segmentation
experiments, the growth prediction experiments are
carried out in this section. Studies have shown that
recurrent neural networks like long short-term mem-
ory (LSTM)?* and Gated Recurrent Unit (GRU)?° can
deal with time series tasks. Compared with LSTM,
the Convolutional LSTM (ConvLSTM)?® is designed for
spatio-temporal sequence prediction, which can per-
form convolution in multi-dimensional data to capture
spatial features. The Convolutional GRU (ConvGRU)?’
performs similar operations on GRU. However, it has
only two gates, which makes the computation less and
the performance no worse than that of ConvLSTM. Its
working mechanism is as follows:

Rt = o (WX + WhrsHy_+) (12)
Zy = 0 Wiz Xy + WhzxHy_4) (13)
F’t = tanh(th*Xt + Rl‘o(Whh*Ht—1 )) (14)

Hy = (1= 2;) oHi_1 + ZioH; (15)

MEDICAL PHYSICS——
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FIGURE 7 Overview of the proposed growth prediction model,

where “AGRU” represent the attention-based gated recurrent unit
(AGRU) module.

where X;, Ry, Z;, H;, and H; are the input tensor, reset
gate, update gate, new information, and memory state,
respectively. W, represent the weight and the bias
terms are omitted for notational simplicity. * is the con-
volution operation and o is the Hadamard product. o
and tanh denote the sigmoid function and tanh function,
respectively. Once a new input arrives, the reset gate
will control whether to clear the previous state and the
update gate will control how much the new information
will be written to the state.

Inspired by this, we propose an encoder-recurrent-
decoder framework to predict the future shape of CNV,
which is shown in Figure 7. Firstly, we concatenate the
first three time points OCT images and their segmen-
tation results respectively denoted as Ty, T4, and T,.
Then, we use UNet?® as the backbone of the encoder.
Specifically, on the encoder side, 4 convolution layers
all have a filter size of 3 x 3, the stride of 1, followed
by rectified linear unit (ReLU) activation function and
zero padding of 1. Max-pooling has been performed
over 2 x 2 spatial windows with stride 2. Furthermore,
the obtained high dimension feature maps Xj, X4, and
X, are input to the attention-based gated recurrent unit
(AGRU) module. This module is improved on the basis
of ConvGRU, which can jointly consider the temporal
and spatial characteristics of spatio-temporal sequence
images while reducing the amount of computation. In
particular, we use the attention mechanism to improve
the update gate, so that the network can focus on the
spatial-channel-wise variation of the current input. The
working mechanism of the AGRU module is as follows:

Ry = Greset (Xn, Hn—1) = 0 (Wi Xy, + WhyHp_q)
(16)
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FIGURE 8 The architecture of the proposed update gate.

Zn = Gupdate (Hn—1 _Xn)
= 0 (Fsa(Hp—1 —Xp) oFca(Hp-1 — X)) (17)

H, = tanh (W,,+X, + R,o(WhpxHp_1)) (18)
Hy,=(1-2,) oHp_4 +Zn°F’n (19)

where X,,, R, Z,, H,, and H,, are the input tensor, reset
gate, update gate, new information, and memory state,
respectively. Since the morphology of CNV is changing,
we want to fully predict the areas that remain unchanged
and the areas that will change with the attention mech-
anism to determine what previous information should
be retained in H,_4 and what new information should
be updated from H,. So, we use H,_1 — X, as the input
of the update gate. The architecture of the proposed
update gate is illustrated in Figure 8.

As can be seen that for spatial attention, we perform
1 x 1 convolution and cross-channel average pooling to
get the overall response in each spatial position. This
operation is defined as Fg, in Equation (17). For chan-
nel attention, we introduce the global average pooling
and global max pooling for the input, respectively. Then
two fully connected layers are applied to get the channel
attention maps. The summation of two-channel atten-
tion maps is defined as F¢, in Equation (17). The overall
attention map is computed by element-wise multiplica-
tion of the spatial attention map and channel attention

map. After a sigmoid operation, we can get the output of
the update gate.

On the decoder side of Figure 7, there are four decon-
volution layers and finally, the prediction results are
achieved through the 1 x 1 convolution. In addition, con-
sidering that the CNV regions to be predicted are most
relevant to the T, image, we perform the concatenation
operation for the feature maps generated by T, in each
stage and the feature maps restored by the decoder
to make up for the loss of fine information caused by
down-sampling.

3 | EXPERIMENTS AND RESULTS

3.1 | Dataset

In this study, there are 63 CNV subjects, and each sub-
ject has OCT follow-up images collected by Shanghai
General Hospital at 4 time points (time intervals are
within 30 + 7 days [mean + SD]). All the SD-OCT images
are obtained by the Heidelberg scanner with a size of
512 x 496 x 19 voxels (12.38 um x 3.87 um x 261.9 um),
covering a volume of 6 mm x 2 mm X 5 mm. The
third dimension is 19, which means each 3D OCT
has 19 slices. Therefore, we have 4788 slices of 63
patients, and the following experiments are based on
these two-dimensional images. The annotations of the
CNV boundaries were all manually segmented by pro-
fessional physicians. The injection of Anti-VEGF and the
changes in CNV are shown in Figure 9.

3.2 | Experimental setup

3.2.1 | Parameter setting

The aforementioned models were implemented with
Pytorch. All experiments were conducted on a computer
with Intel Core i7-9700 CPU, GPU NVIDIA GeForce

Injection Injection Injection
4 4 W | R
0 1 2 3 /month
Baseline Post-injection 1 Post-injection 2 Post-injection 3

FIGURE 9
neovascularization (CNV) boundary.

Optical coherence tomography (OCT) B-scans of the same patient at different time points. The red line is the choroid
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RTX 2060 SUPER, and 16 GB RAM. For the registration
model, 43/11/9 patients were respectively used for
training/validation/testing. Adam optimizer was adopted
to optimize the loss function, setting the learning rate
to 0.0001, batch size to 16, and epoch to 400. For the
segmentation model, a 4-fold cross-validation strategy
was adopted. The first three folds include the data of 16
patients separately, and the last fold includes data of 15
patients. We trained the model for 200 iterations per-fold
with a batch size of 2. For the growth prediction model,
we used the same cross-validation method, but the
batch size and epoch were set to 4 and 50, respectively.
To prevent over-fitting and improve the robust ability
of the model, we performed the online data augmen-
tation strategy, including horizontal flipping, shifting,
and rotations of —20 degrees to 20 degrees. For a fair
comparison, we used the same training strategy in all
experiments.

3.2.2 | Evaluation metrics

In addition to the RMSE mentioned above, we also use
normalized mutual information (NMI) to measure the
effect of registration, as shown below:

H(lp) + H(lr)

s r

(20)

where [f is the reference image, I, is the registered
image. H(Ilf) and H(I,) represent the information entropy
of Ir and I,, respectively. H(If, I,) is the joint entropy of /¢
and /,.

To comprehensively and fairly evaluate the segmen-
tation performance of different methods, five evaluation
indicators are used, including Dice similarity coefficient
(Dsc), Jaccard index (Jac), Sensitivity (Sen), number
of parameters, and test time, among which Dsc and
Jac are the most commonly used metrics in validating
the performance of segmentation algorithms 2%-3' Their
definitions are as follows:

2% TP

Dsc = o TP T FP T EN 1)
TP

P = TP TN N @2
P

Sen = w5 Fn (23)

For growth prediction, we also apply three additional
indicators, including Precision (Pre), Specificity (Spec),
and Accuracy (Acc).

Pre = =5 Fp (24)
TN
Spec = TN Fp (25)

MEDICAL PHYSICS——

TP+ TN
ACC = T FP+ N+ TN (26)

where TP denotes true positive, TN denotes true neg-
ative, FP denotes false positive, and FN denotes false
negative.

3.3 | Results

3.3.1 | Registration results

To prove the effectiveness of the proposed registration
method, we compare our proposed method with other
excellent registration algorithms, including a traditional
image registration algorithm SimpleElastix®>? and a rigid
registration network based on deep learning proposed
by Sloan et al.*® as shown in Table 1. SimpleElastix
is originally used for intensity-based registration of
medical images. Here we perform a rigid registration
experiment with default parameter settings, including
mutual information measure, adaptive stochastic gradi-
ent descent (ASGD) optimization, and linear interpolator.
Sloan et al. use real transformation parameters as
supervisory information to train the full convolution
regression network, of which the loss function used is
the mean square error between the real transformation
parameters and the predictive transformation param-
eters. Since the dataset used in this paper does not
contain the real transformation parameters, we use two
of the four key points mentioned above to calculate the
rotation angle, horizontal and vertical displacement as
the ground truth for experiments. In addition, compared
with the unregistered images, the performance of the
above methods is evaluated by RMSE, NMI, and test
time. It can be observed from Table 1 that compared with
the traditional SimpleElastix, our registration method has
advantages in three indicators, especially in reducing
the test time greatly. It is worth noting that Sloan et al.’s
method that directly predicts transformation parameters
has a better performance than the method based on
intensity similarity. However, due to the different units
of transformation parameters, simple objective functions

TABLE 1 Comparison of registration results.

Test

METHODS RMSE NMI time (s)

43.182 + 28.114 0.161 + 0.094 -
12.026 + 22.757 0.632 + 0.134 14.705
9.294 + 10.242 0.650 + 0.038  0.079
6.754 + 5.292  0.666 + 0.043 0.083

Abbreviations: NMI, normalized mutual information; RMSE, root mean square
error.
Values in bold indicate the best performance.

Without registration
SimpleElastix?
Sloan®®

Proposed
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FIGURE 10 Comparison before and after registration. The first row is B-scans at four time points that are not registered, and the second
row is B-scans at four time points after registration, in which the first column is used as the reference image.

cannot fully learn such differences, which makes the
network difficult to converge.

Figure 10 shows the comparative B-scans of a ran-
domly selected patient before and after registration. The
B-scans in the first row are unregistered, from which can
be seen that there is a large displacement deviation in
different follow-up visits. The B-scans in the second row
are registered, reducing the offset of the CNV area to
a certain extent which is caused by different shooting
positions or the patient’s eyeball rotation. Based on the
above analysis, this registration method can avoid the
change of CNV morphology caused by non-rigid reg-
istration. This is conducive to observing the change of
lesion area in the same position, and further reduces the
obstacle for subsequent CNV growth prediction.

3.3.2 | Segmentation results

In this section, we compare the proposed co-
segmentation network with single input segmentation
methods and one common co-segmentation model. The
U-shape based networks such as U-Net?® CE-Net3*
CPFNet2° and Swin-Unet®® are trained as the single
input segmentation methods. Among them, UNet is the
most classic network in the field of image segmentation.
CE-Net and CPFNet proposed later are both improved
on the basis of UNet and designed specifically for
medical image segmentation. Swin-Unet is a U-shaped
architecture based on the pure transformer, which has
achieved good performance in many segmentation
tasks. The transformer block can learn global and long-
term semantic feature interaction well, thus avoiding the
inherent limitations of the convolution operation. Table 2
gives the quantitative experimental results. Firstly, com-
pared with single input segmentation methods, the

proposed method has achieved better segmentation
performance and the Dsc, Jac and Sen are improved by
0.55%, 0.61%, and 1.01% respectively, and the number
of parameters is less. In addition, we also compared
the proposed method with a common co-segmentation
method, which is a semantic aware attention based
co-segmentation model with few computing resources
proposed by Chen et al 3¢ As can be seen from Table 2,
compared with the method of Chen et al., the proposed
method gets an overall improvement in terms of all three
indicators with fewer parameters. The proposed network
without the CAG module is used as the baseline method.
Compared with the baseline method, the performance
of our method has been greatly improved and achieves
85.27% for Dsc, 80.62% for Jac, and 90.10% for Sen. In
addition, it can be seen from Table 2 that the complexity
and test time of our model are comparable or less
than those of other methods. Here, the test time of
co-segmentation refers to the total time of four images
simultaneously segmented. The above experiments are
completed on the basis of registration. Then, we input
the unregistered follow-up images into the proposed
co-segmentation network, and the segmentation per-
formance is significantly decreased, with Dsc 83.69%,
Jac 78.78%, and Sen 88.15%. The experimental results
show the proposed CAG module has poor performance
on unregistered images, and even plays a negative role.
This may be because the position correlation of CNV in
the unregistered follow-up images is not high, making
the network incorrectly guide the segmentation of the
next follow-up image. However, the location correlation
of the registered images is improved, so the proposed
CAG module can capture the location correlation and
semantic correlation of a pair of images at the same
time, which is conducive to guiding the segmentation of
the next follow-up image.
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TABLE 2 The Results of comparable experiments and ablation studies on choroid neovascularization (CNV) segmentation.
Methods Networks Dsc (%) Jac (%) Sen (%) Parameters (M) Time (ms)
Single input Swin-Unet®® 78.80 + 0.78 73.60 + 0.61 83.00 + 2.33 17.9 16.4
segmentation U-Net?® 82.33 = 2.12 77.34 +2.57 85.55 + 2.52 31.0 4.0
CE-Net34 84.48 + 1.47 79.91 + 1.44 89.59 + 1.36 29.0 9.1
CPFNet?® 84.72 + 1.14 80.01 + 1.06 89.09 + 1.45 433 12.6
Co-segmentation Chen et al 3¢ 83.55 + 1.16 78.38 + 1.44 88.81 + 1.46 32.8 31.0
Baseline 84.31 + 0.87 79.75 £ 1.02 89.50 + 1.98 21.7 29.3
Proposed 85.27 + 0.91 80.62 + 1.01 90.10 + 1.54 26.1 327

Values in bold indicate the best performance.

Image  Swin-UNet  UNet CENet
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FIGURE 11
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CPFNet Chen Baseline  Proposed
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CPFNet Chen Baseline  Proposed

'.
15

Two cases of choroid neovascularization (CNV) co-segmentation. From left to right: input image, segmentation result of

Swin-Unet, UNet, CENet, CPFNet, Chen, baseline, and the proposed method. Yellow represents the correctly segmented region, while red and
green are the results of false negative segmentation and false positive segmentation, respectively.

To qualitatively analyze the effectiveness of the seg-
mentation method proposed in this paper, two cases of
segmentation results of several methods are shown in
Figure 11, where yellow represents the correctly seg-
mented region while red and green are the results of
false negative segmentation and false positive segmen-
tation, respectively. Overall, Swin-Unet performs worst,

probably because the transformer block lacks the ability
to extract complex pathological features. In Figure 11a,
the CNV has a large area and its boundary is not
obvious, which poses a great obstacle to the segmen-
tation task. Among these results, U-Net has a serious
mis-segmentation problem, while the performance of
CE-Net and CPFNet is better than U-Net, which may
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TABLE 3 Experimental results of growth prediction with segmentation results as input.

Methods Dsc (%) Jac (%) Pre (%) Spe (%) Acc (%)

TAPred®’ 79.69 + 1.56 7475+ 1.85 86.06 + 3.11 99.68 + 0.12 99.46 + 0.15
Baseline 82.19 + 2.66 77.22 +2.97 83.49 +4.33 99.63 + 0.16 99.51 +0.20
Baseline+CLSTM 83.17 + 2.51 78.24 +2.69 84.14 + 4,54 99.65 + 0.19 99.51 +0.23
Baseline+CGRU 83.38 + 2.51 78.75 +2.76 87.10 + 5.14 99.73 + 0.16 99.57 + 0.18
Baseline+AGRU (proposed) 83.69 + 2.50 78.85 + 2.55 86.91 + 4.75 99.73 + 0.15 99.54 + 0.21

benefit from the fused context information. However,
there are still some false negative segmentation and
false positive segmentation. The results of Chen et al.
indicate that only channel-wise attention may underes-
timate the correlation between the two images when
there are large changes in them, reducing the channel
weights and causing some mis-segmentation problems.
It is worth noting that with the help of the CAG mecha-
nism, our method can guide the extraction of features
at the next time point according to the existing fea-
tures, thus reducing part of the wrong segmentation.
Moreover, the proposed method also works well in the
case of small CNV regions, which can be seen in
Figure 11b.

3.3.3 | Growth prediction results

To achieve the growth prediction of CNV, the segmen-
tation results obtained by our co-segmentation network
are input into the growth prediction network. In this part,
we conduct a series of comparative experiments and
ablation experiments to verify the effectiveness of the
proposed method. The quantitative results of different
methods for the growth prediction of CNV are shown
in Table 3. TAPred was proposed by Zhang et al.®" for
automated prediction of geographic atrophy (GA) lesion
growth. Here we adapt their model to fit the CNV growth
prediction task. In addition, we set the Baseline method
by using concatenate operations instead of recur-
rent neural networks in this study. Baseline+CLSTM,
Baseline+CGRU, and Baseline+AGRU represent Con-
vLSTM, ConvGRU and AGRU used as recurrent neural
networks, respectively. As can be seen from Table 3,
with the high accuracy of the above registration and
segmentation network, the growth prediction experi-
ments have basically achieved a considerable effect,
especially our method has made an overall improve-
ment in terms of most metrics. Firstly, compared with
TAPred method, the proposed method improves the
Dsc, Jac, Pre, Spre and Acc by 4.00%, 4.10%, 0.85%,
0.05%, and 0.08% respectively, and the main indicators
Dsc and Jac reach 83.69% and 78.85%, which indi-
cates that our prediction results are closer to the actual
follow-up. In addition, compared with the Baseline, the
existence of recurrent neural networks is crucial for the
growth prediction task which can capture the dynamic

changes of the input. And among these recurrent neural
networks, our AGRU network has better performance
due to the integration of spatial attention and channel
attention of longitudinal data. Similarly, when the unreg-
istered images are inputted into the growth prediction
network, the resulting Dsc, Jac, Pre, Spe and Acc are
76.43%, 71.25%, 82.28%, 99.67%, and 99.38%. This
proves the effectiveness of the previous registration
work, which can enable the prediction network to better
capture the dynamic changes of pixels at the same
location.

Figure 12 shows two examples of CNV growth pre-
diction results. The first row is the patient’'s follow-up
OCT B-scans and the second row is the input segmen-
tation results, followed by the prediction results. It can
be observed from Figure 12a and b that compared with
TAPred method, our model is able to represent subtle
reduction and strong growth in size well. The predicted
results are closely related to the segmentation results,
and the results of our proposed method are largely
consistent with the ground truth, which further shows
the effectiveness of the proposed method.

4 | CONCLUSION AND DISCUSSION

In this paper, we propose a CNV growth prediction
method based on deep learning, including registration,
co-segmentation, and growth prediction. Firstly, the reg-
istration model is trained by matching key points to
register the follow-up image to the reference image.
Then, the co-segmentation network embedded with the
CAG module collaboratively segments the longitudinal
SD-OCT images. Finally, the growth prediction model
integrating CNN and AGRU modules is designed, which
can extract the features of each OCT B-Scan and learn
the spatio-temporal information of the longitudinal data,
respectively. To the best of our knowledge, it is the first
time to develop a CNN-based method for CNV growth
prediction. The experimental results show that our pre-
diction results of CNV are largely consistent with the
ground truth and may become a potential technology
to provide useful prognostic information for clinicians
and patients. In addition, we calculate the efficiency of
the three networks as a whole. The input is four 3D
OCT follow-up images of a patient, that is, each 3D
OCT has 19 slices. After the preprocessing of these
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Proposed

Baseline TAPred

FIGURE 12 Two examples of choroid neovascularization (CNV) growth prediction results. The first row is the patient’s follow-up optical
coherence tomography (OCT) B-scans. The blue box in the second row is the input CNV segmentation results, followed by the prediction results
of different methods in the purple box. In the prediction results, yellow represents the correctly predicted region, while red and green are the
results of false negative prediction and false positive prediction, respectively.

four images, the time required from registration to seg-
mentation to obtaining growth prediction results is about
18.7 s. Note that this time is based on OCT volume, and
also includes data reading and storage. The proposed
method is highly efficient and can meet clinical needs.
Although the CNV morphology of T, and T3 is similar,
their Dsc and Jac are 80.44% and 75.51% respec-
tively after registration, so it is valuable to carry out
the growth prediction task. However, there is a ques-
tion about whether a single follow-up visit can provide
enough prior information to predict subsequent follow-
up visits. To answer this question, we do not use Ty, T4,
and T, as the input of growth prediction, but only use
T, to predict T3, and the resulting Dsc is 82.86% and
Jac is 77.86%. It can be seen that the recursive network
combines the growth trend of CNV at the previous two
time points to provide a reliable reference for the sub-
sequent prediction. Besides, when the manually labeled
masks are used as the input of the growth prediction
model instead of the segmentation results, the predic-
tion results are more similar to the ground truth, with
the Dsc of 92.32% and the Jac of 88.08%, which shows
that if the segmentation performance can be improved,
our growth prediction effect will be better and closer
to reality. According to the predicted CNV morphology;,
combined with some clinical indicators, the attending
physician can judge the efficacy of the drug and decide

whether to continue the injection next month or change
the treatment plan.

In the future, we will explore strategies to improve the
accuracy of segmentation and expand our prediction
model to 3D. Furthermore, ophthalmologists are more
concerned about quantitative indicators of patient prog-
nosis, such as best corrected visual acuity (BCVA) and
central retina thickness (CRT). Therefore, if these val-
ues can be predicted directly, it will be of great help to
ophthalmologists and patients, so we leave this for our
future work.
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