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Abstract: Retinal image registration is a critical task in the 

diagnosis and treatment of various eye diseases. And as a 

relatively new imaging method, optical coherence tomography 

(OCT) has been widely used in the diagnosis of retinal diseases. 

This paper is devoted to retinal OCT image registration methods 

and their clinical applications. Registration methods including 

volumetric transformation-based registration methods and 

image features-based registration methods are systematically 

reviewed. Furthermore, to better understanding these methods, 

their applications in correcting scanning artifacts, reducing 

speckle noise, fusing and splicing images and evaluating 

longitudinal disease progression are studied as well. At the end 

of this paper, registration of retina with serious pathology and 

registration with deep learning technique are also discussed.  
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Index Terms-medical image registration, optical coherence 
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1 Introduction 

Optical coherence tomography (OCT) imaging technology is a 

non-invasive, non-contact biological tissue imaging technology. 

Compared with magnetic resonance imaging (MRI), computed 

tomography (CT) and other imaging techniques, OCT is 

relatively new and has developed rapidly in recent years. At 

present, its main application is for the study of retinopathy, such 

as macular hole, glaucoma, retinal detachment and age-related 

macular degeneration, all of which can lead to blindness [1-5]. 

The principle of OCT is the estimation of the depth at which a 

specific backscatter originated by measuring its time of flight 

[6]. As shown in Fig. 1, the light is split into two beams by a 

beam splitter. One beam reflected from the retinal tissue is 

called the sample arm and the other beam reflected from the 

reference mirror is called the reference arm. The interferogram 

energy between the sample arm and the reference arm is 

converted into image intensity by CMOS sensor, CCD or photo 

sensor. A depth scan generated by the interferogram intensities 

is called A-scan. By acquiring a series of A-scans in a raster 

scanning pattern, the cross sectional slicer called B-scans are 

generated. Composing successive B-scans yields a 3D OCT 

imaging of retina as shown in Fig. 2.  

Registration is a fundamental task in medical image 

processing used to match multiple images taken from different 

viewpoints, different sensors or different time points. In 

particular, medical image registration can be used for studying 

longitudinal and cross-sectional data, quantitatively monitoring 

disease progression and guiding computer assisted diagnosis 

and treatments [7]. In the past decades, many registration 

techniques have been developed for various types of data and 
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applications. Since OCT imaging is relatively new compared 

with other medical imaging modalities such as MRI and CT, the 

requirement for processing OCT images has a shorter history. 

With the fast development of OCT technique, the demand for 

advanced image analysis techniques is rapidly growing. As one 

of the main tasks in retinal OCT image processing, retinal OCT 

image registration can be used for studying longitudinal and 

cross-sectional data, quantitatively monitoring disease 

progression and guiding computer assisted diagnosis and 

treatments [7]. Nevertheless, the development of registration 

technique which enables more precise and quantitative 

comparison can be challenging for 3D retinal OCT imaging. 

The main reasons are as follows: 1) OCT image is inherently 

noisy. OCT image is inevitably disturbed by noises, especially 

speckle noise [8-10]. A raw OCT image usually has very poor 

image quality due to speckle noise, which often obscures the 

retinal structures. Intensity-based registration methods are 

usually sensitive to speckle noise and have poor registration 

performance for low quality images. 2) Retina is a non-rigid 

moving organ inside a moving body. Only rigid transform is not 

enough to describe the deformation of retina. Furthermore, the 

non-rigid mixed eye motion makes the registration more 

complex. 3) Compared with the brain, the retina exhibits fewer 

stable and accurate anatomical landmarks, especially when the 

lesions occur, the retinal structure can change drastically. 

Therefore, it brings great challenges to feature detection and 

matching for registration. 4) Compared with other traditional 

imaging methods such as MRI, OCT has higher image 

resolution, which greatly increases the computational 

complexity of non-rigid registration. These characteristics lead 

to relatively poor performance when directly applying existing 

medical image registration approaches to retinal OCT images. 

The experiments show that the highly-rated deformable 

registration algorithms such as SyN, DRAMMS and HAMMER 

are unreliable when applied to the whole OCT image and take 

much longer time to finish registration process than for a 

standard MR brain registration [11, 12]. The successful 

development of accurate and fast OCT image registration 

technology can greatly enhance our understanding of retinal 

morphology and function and help the computer-aided disease 

analysis and diagnosis.  

 
Fig. 1 Schematic diagram of OCT image formation. (Cited from Ref. 

[6].) 
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   (a)  3D view         (b) y-z view       (c) x-y view 

Fig. 2 Example of a 3D OCT scan of retina. 

 

Despite a lot of research works have been done on medical 

image registration methods [13-22], very few review papers 

focusing on retinal image registration have been published. In 

the two review papers on medical image registration, retinal 

image registration was briefly mentioned [7, 23]. Saha et al. 

reviewed the state-of-the art registration methods of 2D fundus 

imaging [24]. Baghaie et al. [25] briefly reviewed the use of 

image registration techniques in OCT image analysis. Sonka et 

al. provided a brief overview of registration approaches for both 

2D fundus imaging and 3D OCT imaging in a separate section 

in their paper [6]. Our review is devoted to 3D retinal OCT 

imaging registration methods and their application issues. To 

the best of our knowledge, this is the first paper to 

systematically summarize the research work in the field of OCT 

retinal registration. Compared with other documents which 

cover the theoretical aspects of image registration, our paper has 

some novel points. 1) This paper systematically reviews the 

registration methods of retinal OCT imaging, including 

volumetric transformation-based registration methods and 

image features-based registration methods. This paper not only 

simply introduces the registration methods, but also discusses 

their advantages and disadvantages. 2) This paper summarizes 

the main clinical applications of retinal OCT registration 

technology and provides ideas for how to use registration 

technology to assist clinical computer diagnosis and analysis. 3) 

This paper discusses the technical difficulties of retinal OCT 

image registration, especially the image registration of 

retinopathy. How to combine deep learning technique with 

retinal OCT registration method and how to embody the 

robustness of deep learning while retaining the advantage of 

traditional registration methods can be studied from these 

reviewed works. 

2 Registration Methods 

In this paper, retinal OCT image registration methods are 

divided into two major classes, namely volumetric 

transformation-based registration methods and image 

feature-based registration methods. Fig.3 provides a brief 

overview of these methods. More details are given in the 

following sections. 

 

Fig. 3 Overview of the methods for retinal OCT image registration 

 

2.1 Volumetric Transformation-based Registration Methods 

Volumetric transformation-based registration methods seek to 

maximize the voxel similarity between the template image and 

subject image. These methods do not need to construct a 

specific anatomical model, but generally requires that the 

template image and the subject image are obtained by the same 

imaging protocol.  

2.1.1 Intensity Difference and Cross-correlation Methods 

SAD (sum of absolute difference) and SSD (sum of squared 

intensity difference) are two commonly used intensity similarity 

criteria. In SAD method, the template image and the deformed 

image are subtracted pixel-by-pixel and the sum of absolute 

intensity differences of all the pixels in the subtracted image is 

calculated. The best deformation is determined by minimize the 

SAD value. SSD measure is similar to SAD measure, but the 

squared intensity difference is computed instead of the absolute 

intensity difference. Cheng et al. [26] used SAD measure to 

align a group of A-scans in the neighborhood of the target 

A-scan and reconstructed the target A-scan using low rank 

matrix completion to reduce speckle noises in OCT images. 

Wang et al. [27] adopted the Matlab built-in Powell’s optimizer 

to minimize SSD between different OCT images in the image 

registration process to alleviate the influences of motion 

artifacts. Chen et al. [11] checked the SSD error produced by 

the current deformation relative to the target image in their 

energy function to solve the deformable transformation for each 

A-scan. 

Since these registration algorithms are based on intensity 

differences, the similar intensity ranges and consistent intensity 

values in a particular tissue type between the subject and target 

images are required. However, OCT data often shows 

considerable intensity variability. One potential improvement to 

address this is to use a similarity metric that is more robust to 

intensity variability. It is suggested that the cross-correlation 

measure may be a good replacement for SAD and SSD [11]. 

When there is a linear relationship between the intensity values 

of the images to be registered, cross-correlation is the best 

measure for registration. The optimum alignment is determined 

by the maximum value of the cross-correlation. Zhang et al. [28] 

proposed a two-step image registration scheme that combined 

global and local registrations for speckle reduction. The method 

began with a global registration to compensate for overall 

motion. The cross-correlation coefficient was selected as the 

cost function that determined the similarity between the 

template image and subject image. Then each A-scan was 

aligned by cross-correlation using a graph-based algorithm in 

local registration. This method did not rely on any information 

about the retinal layer boundaries and was able to correct 

translation, rotation, and local deformation in the axial direction. 

Zheng et al. [29] used registration to assist OCT retinal layer 

segmentation. In their paper, the deformable registration was 

conducted using the ANTS Symmetric Normalization algorithm 

[30], with the cross-correlation similarity metric and a Gaussian 

regularizer. After registration, reference segmentations from 

each of the training images were warped into the test image 

space. 

2.1.2Mutual Information- based Methods 

Mutual information (MI) is derived from information theory. It 

quantifies the amount of statistical information that one image 

depends on the other or the statistical dependence between two 

random variables. The mutual information is maximized for the 

optimal alignment. Since the nature of the relationship between 

the image intensities in the registered image is not assumed [22], 
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mutual information-based methods can be applied to both 

mono-modal and multi-modal registration. Although mutual 

information-based registration is widely used for both 

mono-modal and multi-modal medical image registration of 

various parts of the human body, some recent studies have 

confirmed that the mutual information may not be a universal 

method to solve all registration problems, especially for thin 

structure images, such as retinal images [22, 24]. In retinal 

image registration, one solution to improve the registration 

accuracy is combining some other information into the 

calculation of mutual information.  An example is to embed 

spatial information into the calculation of mutual information 

such as regional mutual information (RMI) [31], localized 

mutual information (LMI) [32], conditional mutual information 

(CMI) [33] and spatially encoded mutual information (SEMI) 

[34]. In the recent work of Gong et al. [35], the spatially 

region-weighted correlation ratio (SRWCR) which incorporates 

the spatial information into the functional mapping relationship 

was used as an alternative intensity-based metric for image 

registration. Their experiment results show that SRWCR is 

more suitable for the registration of retinal OCT image 

compared with MI and SEMI. And another solution to improve 

the registration accuracy is to combine the mutual information 

with some other retinal features, also known as hybrid method. 

Wei et al. [36] applied a non-rigid registration method which 

combined normalized mutual information based registration 

with the feature landmark points based coherent point drift 

(CPD) registration to align retinal OCT volumes. 

2.2 Image Features-based Registration Methods 

Different from volumetric transformation-based methods, 

feature-based methods utilize a number of distinct anatomical 

features to determine transformation parameters. Such features 

are normally distinct landmark points, curves, surfaces or a 

combination of them. Feature-based registration methods are not 

as general as volumetric transformation-based methods. For 

different registration problem, different features have to be 

designed. However, feature-based registration methods still 

have several advantages. First, feature-based methods have low 

computational complexity because they evaluate a matching 

criterion on a relatively small number of feature points instead 

of on every single voxel in an image. Second, well selected 

features have less ambiguity than intensity similarity in defining 

correspondences especially for aligning images with intensity 

distortions. Feature-based registration methods have been 

widely used in retina registration [37-42]. These methods can be 

generally divided into point-based registration methods and 

layer-based registration methods. 

2.2.1Point- based Methods 

Point-based registration methods are mainly used for rigid 

transformation and affine transformation. If the landmark points 

used for computing the registration transformation are rich 

enough, they can also be applied to more complex deformations 

in theory. Since SD-OCT image is inherently noisy and the 

structure of retina can drastically change for diseased retina, few 

stable and distinct landmarks can be extracted for retina. The 

normally used landmarks obtained from OCT images include 

the fovea position as the functional center of vision, the optic 

nerve head connecting the eye to the brain and the retinal 

vasculature. The fovea position is usually used for initial 

registration. For example, Chen proposed to use the position of 

fovea which was approximated by the superior point of the 

thinnest portion of the retina as the landmark point in their 

global translation. As a result, the fovea in the subject was 

aligned with the fovea in the target image [11]. However, this 

method does not work for the data with severe lesions such as 

choroid neovascularization (CNV) where the fovea is no longer 

the thinnest portion of the retina. The optic disc location and 

size are also used in initial registration for multimodality images 

[43]. Since images from different modalities differ in size and 

resolution, the optic discs are registered to bring all images to a 

similar scale and resolution [44].  For fundus-fundus 

registration and OCT-fundus registration, most existing 

registration approaches utilize features derived from retinal 

vasculature [43, 45-49]. After the vessel extraction and 

skeletonization steps, the branching point can be easily used as a 

stable marker to determine the image-to-image correspondence. 

Since the retinal vasculature’s structure is stable between 

modalities, bifurcations are reasonable landmark point 

candidates. However, these methods require the blood vessel 

segmentation which could be challenging for poor quality 

images. To overcome this limitation, interest point detection 

schemes including scale-invariant feature transform (SIFT) [40, 

50, 51], salient feature region (SFR) [41], speeded up robust 

features (SURF) [52-54], Low-dimensional Step Pattern 

Analysis (LoSPA) [69] and so on are adopted. Instead of 

bifurcations, interest points are detected and used as landmark 

point candidates. For example, the image corner points are 

always used as the interest points since corner points are 

sufficient and uniformly distributed across the image domain. In 

Harris-PIIFD framework, partial intensity invariant feature 

descriptor (PIIFD) for all corner points was calculated and a 

bilateral matching technique was applied to identify 

corresponding PIIFDs matches between image pairs [55]. PIIFD 

is invariant to image rotation, partially invariant to image 

intensity, affine transformation, and viewpoint/perspective 

change. In another work, image corners detected by the features 

from accelerated segment test (FAST) were used as the 

landmark points. The histograms of oriented gradient (HOG) 

features were calculated form the neighborhood of each 

landmark point. Finally, the best transformation parameter was 

computed using the random sample consensus (RANSAC) 

method [44]. 

2.2.2Layer- based Methods 

Retina has multi-layer structure. From top to bottom, the retina 

can be divided into ten layers including nerve fiber layer (NFL), 

ganglion cell layer (GCL), inner plexiform layer (IPL), inner 

nuclear layer (INL), outer plexiform layer (OPL), outer nuclear 

layer and inner segment layer (ONL+ISL ), connecting cilia 

(CL), outer segment layer (OSL), Verhoeff's membrane (VM), 

and retinal pigment epithelium (RPE). Fig. 4 shows macular 

centered OCT B-scan of a normal eye with 11 surfaces that 

define 10 retinal layers. Layer-based registration methods can 

be applied to both rigid registration and non-rigid registration. 

The retina layers need to be segmented in advance before 

registration and it is important to choose which surface to use 

for registration. 

 

Fig. 4 OCT image with 10 retinal layers. 
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The top and bottom surfaces of the retina are relatively easy 

to segment compared with other surfaces, and they are the two 

most commonly used layer surfaces in layer-based registration. 

Usually these two surfaces are used for initial registration before 

the deformable transformation [11]. Layer flattening is a step to 

flatten the reference surface by A-scan registration and is used 

to correct eye movement artifacts and provide a more consistent 

retinal shape for visualization [56-60]. The reference surface for 

flattening should be robust and easy to detect. In Garvin’s 

approach [59], by segmenting the RPE surface in a lower 

resolution, fitting a thin-plate spline to RPE and vertically 

realigning the OCT volume to make RPE completely flat, the 

misaligned B-scans caused by motion distortion can be 

corrected. However, for 3D OCT data with serous retinal 

disease such as pigment epithelial detachments (PED), 

flattening with RPE may ruin the natural curvature of the 

surfaces, e.g., the dome like shape of the elevated RPE and the 

smooth surface that forms the bottom of the retina. To keep the 

natural curvature of retinal layers, alignment using surface 1 is 

applied [61-63] instead of image flattening. In Shi’s method, 

after segmentation of surface 1, the average z position of the left 

most and right most 20% points in surface 1 in each B-scan was 

used to estimate the displacement of each B-scan. Each B-scan 

was thus shifted up or down to make sure that the average z 

positions of peripheral surface 1 become the same. Adding more 

layer information can be used to deal with more complex 

registration problems. In OCTRexpert algorithm [12], 7 out of 

11 surfaces are used for registration. Different importance 

coefficient was assigned to different surfaces to hierarchically 

deform the image. The voxels in the top and bottom surfaces 

were assigned with the largest importance coefficient to ensure 

the major structure of the subject retina deform to the 

corresponding position of the template retina in the initial stage. 

After the subject image and the template image have been 

approximately aligned, voxels on other surfaces were gradually 

added into the registration by relaxing the importance 

coefficient selection criterion to finish the coarse to fine 

registration. 

Theoretically, layer-based registration method can be applied 

to many pathological cases such as glaucoma, diabetic macular 

edema and central serous chorioretinopathy. However, the 

registration performance highly depends on the accuracy of 

layer segmentation. As one of the main tasks of OCT image 

processing, retinal layer segmentation technology is well 

developed and work quite well on retinal OCT data sets when 

no dramatic change in the layer structure happens. 

Representative segmentation algorithm is graph-based surface 

segmentation algorithm [64]. When additional structures, such 

as intraretinal cysts, subretinal, or sub-RPE fluid exist, accurate 

layer segmentation becomes challenging.  

3 Applications 

Medical image registration is mainly used to match multiple 

images taken from different viewpoints, different sensors or 

different time points. It is an important tool to achieve more 

accurate and quantitative comparison of disease. As a relatively 

new imaging technology compared with MRI and CT, OCT 

imaging is mainly used in the diagnosis of retinal diseases. The 

main applications of OCT image registration in retinal diagnosis 

and treatment are as follows. 

3.1 Application in Correcting Scanning Artifacts 

In ophthalmic application of OCT, involuntary eye movement is 

one of the biggest problems, which can cause artifacts, 

distortions and missing regions. Involuntary eye movement 

caused by heart beat and respiration during OCT acquisition 

process is known as axial motion. It can be observed by viewing 

the data orthogonal to the plane of acquired B-scans. Another 

artifact which is caused by eye movement in the en face view of 

the OCT data is called transverse motion. These motion artifacts 

cause difficulty in 3D image analysis. One way to deal with 

motion artifacts is to use eye tracking equipment to compensate 

the eye movement during image acquisition by hardware 

solution. And another way is the software approach which is 

more general and applicable without the need for additional 

imaging equipment. Recently, several commercial OCT 

scanners have already included additional eye motion correction 

hardware. For example, Heidelberg Engineering HRA-OCT 

Spectralis uses a Scanning Laser Ophthalmoscopy (SLO) device 

with the OCT to track the eye movements during imaging. The 

tracking system is very efficient for correcting transverse 

motion. Since SLO and OCT data are captured simultaneously, 

the motion estimates from SLO image registration can be 

applied to correct transverse motion artifacts in the 

simultaneously acquired OCT volumes [65]. With the help of 

additional hardware transverse motion can be minimized, while 

axial motion correction still requires a software solution [66]. 

Common software approaches for reducing these scanning 

artifacts often use cross-correlation maximization technique. 

The axial motion is corrected by maximizing cross-correlation 

of either A-scans or B-scans [66-72]. For retinal layer 

segmentation, flattening [57, 63, 73] or B-scan alignment [61, 

62] is often used before segmentation to correct eye movement 

artifacts and provide a more consistent retinal shape for 

visualization. In flattening process, each A-scan is aligned to a 

reference surface to obtain flattened images. For B-scan 

alignment, the displacement of each B-scan is estimated and 

each B-scan is thus shifted up or down to make sure that the 

average z positions of the reference surface become the same. 

The upper or lower surface of the retina is usually used as the 

reference surface. Fig.5 shows the axial motion correction result 

after B-scan alignment.  

 
Fig. 5 The y-z image before and after B-scan alignment. 

 

As an extension of OCT technique, optical coherence 

tomography angiography (OCTA) has been widely used in 

ophthalmology in recent years. OCTA is a non-invasive 

approach which provides both functional and structural 

information. It can also be affected by motion artifacts. Previous 

works used only information from OCTA image for motion 

estimation and correction [74-77]. However, when patients 

show low or no blood perfusion due to circulation abnormalities, 

the features that can be used for motion estimation will be 

reduced. Recently, more and more works focus on using both 

OCT and OCTA image for motion correction [72, 78, 79]. A 

multi-image cross-correlation method that employs spatial 

features in both OCTA and OCT images to improve transverse 

motion estimation performance was introduced in [72]. By 

combing OCT and OCTA image, the performance was 

improved. Zang et al. reported a 3D registration algorithm using 

both angiographic and structural OCT information [79]. The 

vasculature on en face retinal OCTA was used to correct 
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transverse motion and the inner limiting membrane surface on 

OCT was used as the reference to correct axial registration. 

3.2 Application in Reducing Speckle Noise 

Speckle noise inherently exists in OCT image and degrades the 

image quality. Speckle noise not only affects visual diagnosis, 

but also increases the challenges in automatic image analysis. 

The common approach to reduce speckle noise and improve the 

OCT image quality is to calculate the average image through 

overlapping scans. The data to be averaged should be acquired 

from the same position. However, in practice, slight position 

changes always happen during scanning due to the movement of 

the beam and the sample. Therefore, registration is important to 

overcome the misalignment. Various registration-based 

algorithms are proposed to reduce speckle noise in OCT image 

[26-28, 80-86]. Cheng et al. proposed to formulate the speckle 

noise reduction problem as a low rank matrix decomposition 

problem in 3D OCT. The proposed method aligned a group of 

A-scans in the neighborhood of the target A-scan and 

reconstructed the underlying clean A-scan using low rank 

matrix completion through iterative bilateral random projections 

[26]. The A-scan registration was done in two steps including a 

global B-scan alignment and a local A-scan alignment step. Liu 

et al. applied an axial and horizontal registration method to 

suppress the speckle noise in retinal OCT adapted to single-line 

HD mode hardware implementation [86]. In their method, 

regularized dynamic programming algorithm and hill-climbing 

algorithm were used to estimate the axial and lateral shifts and 

correct motions efficiently. Thus the image quality of averaged 

OCT images can be improved. In deep learning-based denoising 

methods, the input pairs of original noisy image and clean 

ground truth image are needed for deep network training. 

However, there's no ground truth image readily available. 

Therefore, registration and averaging of B-scans is also a 

necessary step to obtain high quality training image set [87-89].  

3.3 Application in Image Fusing and Splicing 

Registration is the first and important step in image fusing and 

splicing. Retinal image fusion and splicing can be used to 

enlarge retinal coverage by registering imaging data from 

different viewpoints or to analyze multimodal data by 

registering images from different sensors. 

3.3.1 Multi-view analysis 

Clinically, it is expected that a larger field of retinal vision can 

be observed, and the retinal features across larger regions can be 

investigated. The main factor limiting the field of vision is the 

scanning speed of OCT scanner, because the image acquisition 

time is constrained by the patient's ability to gaze without eye 

movements (usually less than two seconds). Image fusing is an 

alternative strategy for obtaining wide-field OCT images. 

However, most of the works are focused on the stitching of 2D 

fundus photos, while the work on the registration and stitching 

of 3D OCT data is relatively less. In the early work, only pairs 

of OCT image are involved, because the multiple images mosaic 

is more challenging [40]. [90] is the first work for mosaicing 

multiple OCT images. In the work, eight partially overlapping 

OCT data sets were merged together to form a new wide-field 

3D OCT data set. First, the OCT fundus images were registered 

using blood vessel ridges as the feature of interest. Then the 

OCT data sets were merged to form a full 3D montage using 

cross correlation. Inspired by this work, a novel approach was 

proposed for layer segmentation of multi-field retinal OCT 

images [42]. Instead of segmenting each field independently and 

then stitching the results together, co-segmentation of all the 

fields was involved to ensure consistent segmentation in the 

overlapped areas. All the fields were segmented simultaneously 

after 2D en-face alignment using SURF descriptors. For 2D 

en-face alignment, simultaneously acquired SLO images were 

used instead of projected OCT images with low resolutions. 

They showed that the NFL thickness map obtained by the 

independent segmentation method of each field had obvious 

distortion in the overlapping area, while the thickness map 

obtained by the proposed co-segmentation method was 

distortion-free. Clinical studies have also validated the benefit 

of wide-field OCTA, since it allows the observation of overall 

vascular abnormalities for clinicians. Features-based automated 

registration and montage for wide-field OCTA can be found in 

[91].  

3.3.2 Multimodality analysis 

In clinical practice, doctors usually use a variety of imaging 

information for better diagnosis. Compared with OCT images, 

fundus imaging can provide different information about the 

retina. Fundus imaging acquires a 2D representation of the 3D 

retina by means of reflected light. The typically used fundus 

imaging methods in clinic include color fundus photography 

(CFP), SLO, fluorescein angiography (FA) and so on. CFP uses 

the imaging light of red, green and blue wavebands. It can be 

applied for detecting retinal abnormalities such as macular 

hemorrhages and geographic atrophy. SLO uses single 

wavelength laser light to produce high contrast 2D en-face 

retinal images. The combination of SLO and OCT not only 

provides a more comprehensive imaging system but also 

corrects motion distortion of OCT images. FA is an invasive 

imaging technique that clearly illustrates vasculature through 

injection of fluorescein into the subject's blood. It is a gold 

standard imaging modality to depict neurovascular structure of 

retina and is used for diagnosing neurovascular related diseases. 

These fundus images are different from OCT image in imaging 

dimension, resolution, contrast and luminosity, which makes 

multimodality registration difficult. The common method of 

registration between 3D OCT image and 2D fundus image is to 

register the fundus image with the z-axis projection image of 

OCT [44, 92], or use SLO image which is collected 

simultaneously with OCT image as intermediate image for 

registration [42, 43, 93-95]. Most existing registration 

approaches utilize detection and extraction of features derived 

from retinal vasculature segmented separately from the 

multimodal images [48, 49]. Vascular features are the most 

commonly used structural features in multimodal image fusing 

since retinal vasculature is the most dominant structure of retina. 

After vascular skeletonization, vascular branching points can be 

easily detected and used as stable landmarks for correspondence 

detection. However, vessel segmentation errors may cause 

corresponding errors in the following registration process. 

Instead, other features such as the HOG feature [44], SURF and 

PIIFD descriptor [96] are used to capture the structural 

information in the images thus the segmentation of blood 

vessels is not required. 

In an earlier study, retinal vasculature was extracted from 

color fundus and OCT projection image respectively. And then 

a registration was performed between vessel images using 

similarity function for the identification of neovascularization at 

the early stage of proliferative diabetic retinopathy [92]. This 

work could also be extended for microaneurysm detection at the 

earlier nonproliferative stage of diabetic retinopathy by 

registration of fundus and OCT images followed by 

classification algorithms. In another application, in order to 

analyze the asymmetry of retinal layers in right and left eyes, 

the OCT images form left and right eyes were registered by 
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alignment of retinal raphe. However, due to limited region size, 

the retinal raphe of macular OCTs was not calculable. Therefore, 

the alignment was achieved by aligning corresponding retinal 

raphe of fundus images and then registration of the OCTs to 

aligned fundus images [97]. Recent research reported accurate 

registration of FA and OCT images via SLO photographs, 

which can exactly detect the location and morphological 

appearance of diabetic retinopathy symptoms in OCT B-scans 

[94]. In their method, retinal vasculature segmentation was 

applied to both FA and SLO images. And then, FA vessel map 

was globally aligned with SLO vessel map photograph using 

SURF and FAST features together. Finally, a local non-rigid 

transformation was exploited to register two images perfectly. 

Combining OCT and OCTA image can not only improve the 

motion correction performance as introduced in section 3.1, but 

also greatly help the assessment of foveal avascular zone 

enlargement in different stages of diabetic retinopathy as 

reported in [98]. Moreover, several studies have shown that 

image fusing of multimodal data is beneficial for automated 

segmentation of optic disc and cup boundaries [99], retinal 

blood vessels [100] and intra-retinal surfaces [101]. 

 

 
(a)            (b)    

Fig. 6 Two examples of CNV growth prediction results. (a) OCT images 

with the CNV segmented in green; (b) Comparison between the clinical 
segmentation and the prediction.  

 

3.4 Evaluation of longitudinal disease progression 

Assessment of progression or regression of retinal disease can 

be obtained from temporal changes of longitudinal OCT images. 

The change of retinal thickness with time in OCT image dataset 

is an indicator of some retinal diseases. For example, retinal 

nerve fiber layer thickness measurement from OCT images has 

been widely used as an important clinical index to indicate 

glaucoma progression. Thinning of retinal layers is associated 

with some neurodegenerative disorders such as multiple 

sclerosis and Alzheimer's disease. In order to compare the 

changes of retinal morphology or function over time, it is 

necessary to register longitudinal OCT image data sets. 

Registration of OCT images for longitudinal analysis of retinal 

layer thickness measurement can be found in [102-108]. 

Another typical application is using the registration method to 

help the growth prediction of choroid neovascularization (CNV). 

As shown in Fig.6, CNV is a choroid lesion caused by new 

blood vessels growing in choroid. CNV related diseases are one 

of the important causes of visual disability. As so far, the 

pathogenesis is still not clear. A standard and effective treatment 

for CNV is to inject anti-vascular endothelial growth factor 

(anti-VEGF) agents into the eye to suppress further blood vessel 

growth. Such treatment requires frequent re-treatments. 

Therefore, in order to ensure the curative effect and reduce the 

risk, it is very important to predict the growth of CNV according 

to 3D longitudinal OCT images, so as to formulate a reasonable 

treatment plan. However, since longitudinal OCT images are 

collected at different time points, the retina displacements which 

are caused by different positions of eye during the scanning 

severely affect the accuracy of prediction. Therefore, it is 

necessary to register the longitudinal OCT images before 

prediction to guarantee the prediction accuracy and observe the 

change of lesion area in the same region [109].  

4 Registration Performance 

Due to the lack of open datasets and gold standard of OCT 

images, it is difficult to evaluate and directly compare the 

performance of OCT image registration. The definition of 

registration accuracy is non-unique and the methods of 

performance measurement reported in literatures are different. 1) 

For intra-modality registration, the commonly used quantitative 

performance metrics are dice similarity coefficient (DSC), 

mutual information, root mean squared error (RMSE), retinal 

surface distance and mean absolute retinal thickness difference 

obtained from layer segmentation; 2) For inter-modality 

registration, measuring the similarity of vascular images such as 

DSC of vessel binary maps, RMSE of manually selected 

vascular landmarks and the success rate of registration are 

commonly used to evaluate the registration performance. The 

success rate is the ratio of the image pairs with successful 

registration to the total number of image pairs. The successful 

registration is determined by the RMSE value of the matched 

points, and for clinical purposes, the RMSE of less than 5 is 

acceptable [110]. Table 1 shows the performances for some 

typical OCT registration algorithms. It should be noted that, in 

retinal OCT image registration, the registration accuracy of 

lesion region is more significant than other regions. 

5 Discussion and Conclusion 

Retinal OCT image registration is crucial for the diagnoses and 

treatments of various eye diseases. However, fast and accurate 

registration of retinal OCT images is still a challenging problem, 

in particular because of the low content contrast, large intensity 

variance as well as deterioration of unhealthy retina caused by 

various pathologies.   

Representative retinal OCT image registration methods, 

which are coarsely divided into volumetric transformation-based 

registration methods and feature-based registration methods, 

have been systematically reviewed in this paper. Volumetric 

transformation-based registration methods use intensity 

information form the overlapped area of two images and seek to 

maximize the voxel similarity by measuring SAD, SSD, cross 

correlation or mutual information to obtain the best alignment. 

Feature-based registration methods calculate the transformation 

based on a number of anatomical correspondences established 

manually or automatically on a number of distinct anatomical 

features. Commonly used descriptors include the position of 

retinal landmarks such as the fovea center, the optic disc center 

and vascular bifurcation points. Moreover, high-level feature 

descriptors such as SIFT, SURF, Harris, HOG and so on are also 

used for feature-based registration. According to the 

corresponding relationship between the extracted feature 

descriptors, an objective function is used to find the best 

transformation parameters. Volumetric transformation-based 

registration methods are more simple and general than 

feature-based registration methods because preliminary 

extraction of specific anatomical features is not needed each 

time when applied to a new problem. However, the computation 

complexity is high for non-rigid registration of 3D OCT images 

since they should consider the similarity of each voxel in the 3D 
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Table 1 Overview of the performances for typical registration methods 

 

Modalities Reference Method Performance Application 

Intra-modality 

Cheng et al. [26] SAD 
MSE：0.0415(normal eye), 0.0558(diseased eye) 

PSNR:23.48(normal eye),21.35(diseased eye) 
MSSI:0.769(normal eye),0.794(diseased eye) 

Speckle Reduction 

Wang et al. [27] SSD PSNR:33dB; SSIM:0.92 Speckle Reduction 

Chen et al. [11] SSD 
DSC:0.77; 

Average layer boundary surface errors:8.0um 

Average atlas and normalized 
space; Statistical atlas; 

RAVENS analysis of multiple 

sclerosis 

Zhang et al. [28] CC 
Improvement in SNR: N ; Improvement in 

CNR:11 
speckle reduction 

Zheng et al. [29] CC 
Average unsigned positioning error:15.2 

millimicron 
Retinal Layer Segmentation 

Gong et al. [35] SRWCR 
HD:256.11um 
MHD:34.98um 

Longitudinal study 

Wei et al. [36] NMI DSC:0.73 Longitudinal study 

Bogunović et 
al.[42] 

SURF Average unsigned positioning error:4.58±1.46um Image Fusing and Splicing 

Pan et al.[12] OCTRexpert 
DSC: 0.92(normal eye), 0.78(diseased eye) 

AUSE:3.3um(normal eye),10.3um(diseased eye) 
Longitudinal study 

Inter-modality 

 

Miri[44] HOG 
RMSE:0.055mm; Success rate:97.72%; 

Time:2.34s 
Image Fusing and Splicing 

Cheng et al. [69] LoSPA RMSE:4.3; MSE:10.3; Success rate:14/18 Image Fusing and Splicing 

Almasi et al. 
[94] 

SURF+FAST 
RMSE:0.23 pixel; Success rate:97.23%; 

Time:26.1s 
Image Fusing and Splicing 

Golkar et al. 

[95] 

Global CPD + 
Intensity + 

Deformable 

Target registration error: 0.09um; Success 
rate:92% (equal FOVs) and 89% (different 

FOVs) 

Image Fusing and Splicing 

 

MSE: mean square error 
PSNR: peak signal to noise ratio 

MSSI: mean structure similarity index 

SSIM: structure similarity  

CC: cross-correlation 

SNR: signal-to-noise ratio 
CNR: contrast-to noise ratio 

NMI: normalized mutual information 

SRWCR: spatially region-weighted correlation ratio 
HD: Hausdorff distance 

MHD: the maximum-likelihood Hausdorff distance 

RANSAC : random sample consensus 
DSC: Dice similarity coefficient 

AUSE: average unsigned surface error 

 

image. Volumetric transformation-based registration methods 

are sensitive to intensity change. Therefore, these methods may 

have poor registration performance for low quality retinal 

images or multimodal retinal images. Furthermore, considering 

each layer of retina has practically uniform image intensity, 

optimality criteria based on image similarity can suffer from 

local minima, which are caused by the ambiguity in defining 

correspondence. Feature-based registration methods rely on a 

relatively small number of significant features, and evaluate a 

matching criterion on features instead of on every single voxel 

in an image thus the computation complexity is much lower. 

The well selected features have less ambiguous than intensities 

in determining the correspondences. However, detecting stable 

features in pathological retina images and low quality images is 

difficult. Table 2 summarized the advantages and disadvantages 

of retinal OCT image registration methods. At present, there are 

no general automatic registration methods to deal with various 

clinical situations (different acquisition protocols, different 

modalities, different viewpoints, etc.). The choice of proper 

retinal OCT image registration method needs to consider both 

the registration computation complexity and accuracy 

requirement according to different clinical applications. 

 
Table 2 Advantages and disadvantages of the methods for retinal OCT 

image registration 

 

Volumetric 
transformation-based 

methods (rely on 

intensity similarity) 

Pros ∙ simple and general 

Cons 
∙ high computation complexity 
∙ sensitive to intensity change 

∙ local minima problem 

Image feature-based  

methods (rely on 
distinct features) 

Pros 
∙ less ambiguous 

∙ low computation complexity 

Cons 

∙ require extra feature extraction 

step 

∙ difficult to detect stable 
features in pathological retina 

images and low quality images 

 

Compared with ordinary retinal image registration, the 

registration of pathological retina is more significant in clinic. 

However, for some lesions, such as choroidal 

neovascularization, registration is facing greater challenges. 1) 

The internal structures of diseased retinas are complex and 
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difficult to be recognized. In addition to the normal multiple 

retinal layers, there may be other additional structures such as 

neovascularization, fluid and so on; 2) Abnormalities lead to 

low contrast and blurred boundaries in OCT images between 

retinal layers. The degradation of image quality caused by 

abnormalities may affect the registration performance; 3) The 

layer structures of retina change dramatically in serious 

pathological regions which makes it difficult to extract stable 

features for registration. Therefore, new registration methods 

that can deal with retinas with abnormalities are needed for 

quantitative analysis of these diseases. 

In recent years, deep learning method has achieved great 

success [111]. Many deep neural network models have been 

adopted successfully in various fields. Recent works also 

extended deep learning technique to solve complex medical 

image registration problem [112-114]. Krebs et al. proposed a 

deformable registration algorithm based on unsupervised 

learning of a low-dimensional probabilistic parameterization of 

deformations for cardiac MR sequences [115]. Islam et al. 

introduced a deep learning based registration framework for 3D 

multi-modal medical images of the head [116]. Yang et al. 

introduced a fast deformable image registration method called 

Quicksilver for 3D brain images [117]. They emphasized that 

their framework can be directly applied to many other 

registration techniques. For retinal registration, Abanovie et al. 

proposed DNN-based feature descriptor for fundus image 

registration and the learned feature descriptor was compared to 

other well-known descriptors using Fundus Image Registration 

dataset (FIRE) [118]. Silva et al. reported a deep learning based 

registration algorithm that aligns multi-modal retinal images 

(color fundus photography, fundus autofluorescence and 

infrared reflectance image modalities) to achieve accuracy and 

robustness required for large-scale longitudinal data structural 

changes analysis [119]. The training was performed end-to-end 

using the architecture shown in Fig. 7, where the combination of 

Siamese feature detectors, correlation matrix, and the regression 

layer directly output the 6-parameter affine transformation 

vector for a source and target image pair. Tian et al. presented 

an unsupervised learning method for deformable registration 

between color fundus image and OCT image [120]. At present, 

the research of deep learning in retinal registration is limited to 

2D images. There is no publicly reported deep learning 

registration method for three dimensional OCT images. 

However, deep learning has great advantages in feature 

extraction. The deeply learned features can directly be 

combined with the traditional registration method to achieve 

better registration performance. It can be expected that in the 

near future, with the help of deep learning technology, more 

accurate 3D feature information can be obtained and the 

complex registration problem of abnormal 3D retinal OCT 

images can be solved. 

 

 
 
Fig.7 Feature based registration using deep-learning (DLAFFINE). 

CNN-based architectures for feature extraction, matching, and 

computing the registration transform. The network outputs 6-parameter 
affine transformation. CONV: convolution layer, BN: batch 

normalization, DO: drop off, RELU: rectified linear unit, FC: 
fully-connected layer. (Cited from [102].)  

 

In the future, compared with rigid, mono-modality and 2D 

registration, retinal OCT image registration technology will pay 

more attention to non-rigid, multi-modality and 3D registration. 

For the eye movement artifact and the complex deformation 

caused by retinal lesions in OCT images, it is difficult to 

compensate these deformations with rigid registration. 

Therefore, non-rigid retinal OCT image registration which can 

describe more complex spatial relationship between images is 

preferred. Normally, 2D registration can only describe the 

spatial relationship between 2D planes. As a 3D image, 3D 

registration for OCT scans can provide more useful information 

than 2D registration. Although most of the previous studies 

focused on single-modal image registration, more and more 

attention has been paid to multi-modal image registration in 

recent years. From the clinical prospective, the combination of 

complementary information from different imaging modalities 

is not only helpful for doctors to diagnose and monitor 

ophthalmic diseases, but also advantageous for computer-aided 

image analysis and diagnosis technology. The non-rigid and 

poorly understood mechanics of the retina along with 

differences in imaging strategies, image geometries, and 

inter-patient variations will continue to challenge registration 

algorithms. It can be expected that there will be a growing 

demand for solutions as OCT imaging becomes more clinically 

relevant. 
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