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Abstract: Choroidal neovascularization (CNV) is a characteristic feature of wet age-related 

macular degeneration (AMD). Quantification of CNV is useful to clinicians in the diagnosis 

and treatment of CNV disease. Before quantification, CNV lesion should be delineated by 

automatic CNV segmentation technology. Recently, deep learning methods have achieved 

significant success for medical image segmentation. However, some CNVs are small objects 

which are hard to discriminate, resulting in performance degradation. In addition, it’s difficult 

to train an effective network for accurate segmentation due to the complicated characteristics 

of CNV in OCT images. In order to tackle these two challenges, this paper proposed a novel 

Informative Attention Convolutional Neural Network (IA-net) for automatic CNV 

segmentation in OCT images. Considering that attention mechanism has the ability to enhance 

the discriminative power of the interesting regions in the feature maps, the attention 

enhancement block is developed by introducing the additional attention constraint. It has the 

ability to force the model to pay high attention on CNV in the learned feature maps, improving 

the discriminative ability of the learned CNV features, which is useful to improve the 

segmentation performance on small CNV. For accurate pixel classification, the novel 

informative loss is proposed with incorporation of informative attention map. It can focus 

training on a set of informative samples which are difficult to be predicted. Therefore, the 

trained model has the ability to learn enough information to classify these informative samples, 

further improving the performance. The experimental results on our database demonstrate that 

the proposed method outperforms traditional CNV segmentation methods.  
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1. Introduction 

Age-related macular degeneration (AMD) is one of the leading causes of blindness particularly 

in old people. Choroidal neovascularization (CNV) is a characteristic feature of AMD. It is 

characterized by the growth of abnormal blood vessels from the choroid layer [1,2]. These 

abnormal blood vessels expand from the choroid underneath the retina and leak. This leakage 

damages surrounding retinal tissue, thus causing deterioration in central vision [3, 4]. 

Optical Coherence Tomography (OCT) has been widely used for evaluation of CNV. High 

resolution OCT imaging technique enables the sensitive detection of multiple retinal cell layers 

and quantitative assessment of these macular lesions within retina [5,6]. Compared with other 

imaging modalities, such as Fluorescein angiography (FA), indocyanine green angiography 
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(ICGA), OCT has the following advantages [7,8]: (1) it’s noninvasive. (2) It can obtain high 

resolution cross-sectional images of the neurosensory retina. (3) High-speed acquisition. 

Accurate CNV segmentation could help doctors conducting auxiliary diagnosis and 

treatment. The image segmentation method can delineate CNV lesion automatically [9]. Based 

on the obtained CNV lesion, doctors acquire the properties of CNV lesion, including the area, 

volume, width, height, optical density value, etc. These properties play an important role in 

diagnosis and treatment of CNV. In order to obtain precise properties of CNV, it is necessary 

to develop effective segmentation method for accurate CNV segmentation.  

In recent years, deep learning methods [10] have achieved remarkable success in image 

processing area, such as image denoising [11], image reconstruction [12,13], image 

segmentation[14,15,16,17]. However, satisfactory performance was hardly achieved by 

directly using the existing methods due to the complex characteristics of CNV in OCT images. 

  
Original image Ground truth 

                Fig. 1.  Examples of CNV in OCT image. 

There are two challenges for CNV segmentation in OCT images. (1) The existing methods 

fail to specially focus small CNV in the feature map learning process, result in unsatisfactory 

performance on small CNV. CNV has been occurred as a small object in the OCT image 

frequently. The mean proportion of CNV pixels in our dataset is 0.25%. Fig.1 also gives two 

examples of CNV in OCT image. We can infer that there is limited information of CNV in 

OCT image, as the spatial resolution of the feature maps is decreased and the large context 

information is integrated, the discrimination power of small object features may be easily 

weakened [18] in the low level feature maps. Meanwhile most of the small object features may 

be lost in the high-level feature maps. Therefore, it’s difficult for existing methods to learn 

discriminative representations of small CNV, resulting in the performance degradation.  

(2) CNV in OCT image has complicated image characteristics, result in inaccurate 

segmentation. As shown in Fig.1, the intensity distribution is complex. Fig. 2 gives the intensity 

distributions between CNV and background. As shown in this figure, we can see that there is a 

large intensity overlap between CNV and background (certain retinal structures), results in the 

large inter-class similarity and intra-class variation. Therefore, it’s difficult to achieve the 

accurate classification for the CNV pixels in the intensity overlap interval. 

In order to tackle these two challenges, a novel Informative Attention Convolutional Neural 

Network (IA-net) is proposed by introducing the attention mechanism. Considering that 

attention mechanism has the ability to enhance the discriminative power of the interesting 

regions [19, 20, 21, 22], the novel attention enhancement block is firstly developed by 

introducing the attention constraint. It can force the learned feature maps to be similar with the 

attention map with ideal discriminative information. In this way, it can improve the 



discriminative ability of CNV features in the low-level feature maps and preserve some feature 

information of CNV in the high-level feature maps, improve the discriminative ability of the 

learned features of small CNV. For accurate pixel classification, the novel informative loss is 

developed by exploring the informative attention map. In this paper, the CNV samples whose 

class membership is hard to be decided are referred to as informative samples. According to 

the developed informative attention model, the informative samples will be assigned high 

attention in the training process. After training, the obtained model has ability to learn enough 

knowledge which is robust to classify these informative instances, further improving the 

performance. To demonstrate the effectiveness of the proposed network, we conduct the 

experiment on our dataset that contains 3034 image slices from 67 3D-OCT data with CNV. 

The experimental results demonstrate that the proposed method outperforms the traditional 

deep learning methods. 

 

Fig. 2.  Intensity distributions of CNV and background in our dataset 

The main contributions of this paper are as follows: 

(a)The attention enhancement block is developed by introducing the attention constraint. It 

has ability to force the model to pay high attention on CNV, improving the discriminative 

ability of the learned features of small CNV, which is useful to improve the segmentation 

accuracy on small CNV. 

(b)In order to obtain accurate classification for CNV pixels which are difficult to be 

predicted, the informative loss is proposed with incorporation of informative attention map. It 

is helpful to learn enough information which is robust to classify these informative instances, 

further improving performance. 

2. Related work 
Recently, automatic CNV segmentation methods have been proposed. Xi et al. proposed a 

learned local similarity prior embedding active contour model [23]. The local similarity prior 

was firstly learned by using superpixels and local potential function. And then, the new energy 

function was constructed by combing the local similarity prior. Zhu et al. proposed a CNV 

growth prediction with treatment based on reaction-diffusion model in 3-D OCT images [24]. 

Before growth prediction, they performed CNV segmentation by using graph search. Xiang et 

al. proposed Neural Network and constrained graph search algorithm (NNCGS). In the 

proposed method, manual designed features and neural network classifier are firstly used for 

initial segmentation. Based on the initial result, a constrained graph search algorithm was 

proposed for finer segmentation of CNV [3]. Liet al. proposed a new 3D-histogram of oriented 

gradient (3D-HOG) feature and update the random forest models persistently [25]. However, 

it’s difficult for handcrafted feature to extract enough discriminative information from smaller 

CNV.  Considering the powerful learning ability of convolutional neural networks, Xi et al 

proposed multi-scale convolutional neural networks with structure prior [26]. The new 
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segmentation model was constructed by introducing the structure prior and multi-scale 

information into the convolutional neural networks. However, the proposed patchwise training 

method was time-consuming due to the large resolution of OCT image. 

In the recent years, deep learning methods were proposed for medical images segmentation. 

Sparse autoencoders were proposed for efficient nuclei detection on high-resolution 

histopathological images [27,28].Van Tulder et al., trained restricted Boltzmann machine with 

a generative learning objective for airway detection in CT images [29]. However, autoencoder 

and restricted Boltzmann machine belonged to the unsupervised deep framework without 

supervised information in the training processing. Generally speaking, as a classic supervised 

deep framework, convolutional neural networks (CNNs) architectures may achieve better 

performance. To obtain the multi-scale information about each voxel, multiple CNNs were 

trained based on 2D image patches with different sizes for segmentation of MR brain images 

[30]. In order to use multi-modality information of MR images, Zhang et al. proposed to use 

CNN for segmenting isointense stage brain tissues of multi-modality MR images [31]. In their 

work, 2D patches from T1, T2, and fractional anisotropy (FA) images were extracted as the 

training instances. However, the segmentation methods based on patches was time-consuming 

because the segmented medical image may generated large number of patches. In order to solve 

this problem, Fully Convolutional Networks (FCN) [32] was proposed. In order to input the 

image with arbitrary sizes, FCN replaced fully connected layers with the convolutional ones 

whose size was 1×1, which can efficiently learn dense predictions for semantic segmentation. 

In addition, deconvolution layers are also introduced to obtain the segmentation result with the 

same size of input image. Compared with traditional segmentation methods, FCN achieved a 

significant improvement in segmentation accuracy and efficiency at inference. By using similar 

idea of FCN, Ronneberger et al. [33] proposed the U-net architecture for biomedical image 

segmentation. Chen.et al. proposed a novel dual-force training scheme which was applied to 

U-net architecture [34]. Wei et al. proposed a multimodel, multi-size and multi-view deep 

neural network (M3Net) for brain MR image segmentation, which uses three identical modules 

to segment transaxial, coronal, and sagittal MR slices, respectively [35]. Each module consists 

of multi-size U-Nets and multi-size back propagation neural networks. Milletari et al. proposed 

V-net architecture which was 3D-variant of U-net [36]. U-net architecture based methods have 

ability to learn effective features of objects. However, these methods fail to specially focus 

small object in the feature map learning process, result in performance degradation. In addition, 

the existing methods ignored the accurate classification of hard pixels, result in the limitation 

of the performance improvement [37,38]. As an effective method to deal with hard examples, 

focal loss [39] was proposed to focus training on hard examples and achieve remarkable 

performance improvement. However, manually tuning hyperparameters in this loss is time -

consuming. 

3. Method 
                                                                      

The basic architecture of the proposed network is shown in Fig. 3. The main modules of the 

proposed network contain attention enhancement block, max pooling, upsampling and 

prediction layer. The attention enhancement block is firstly proposed to guide to learn 

discriminative features of CNV. It can pay high attention on CNV features, which is helpful to 

improve the discriminative ability of CNV features. In order to reduce the complexity of 

features, max pooling is used to select the effective information from the learned feature maps. 

After that, upsampling is performed to obtain the segmentation result with the same size of 

input images by using deconvolution operation. At last, the prediction layer which introduced 

informative loss is used for pixel classification and obtains the final segmentation result.  

To be noticed, Fig. 3 gives the basic architecture of the proposed network. In our experiment, 

U-net[33] is used as the backbone network. The basic network parameters such as kernel size, 

channel size, stride, are same as [33]. The proposed network can be regarded as a modified U-



network. Different from [33], we replace the cross-entropy loss by using informative loss. 

Moreover, the attention enhance block is introduced additionally. 
Input Segmentation result

Max-pooling

Class prediction with informative loss

Upsampling

Attention enhancement block

 

Fig. 3.  Basic architecture of the proposed network 

 

3.1 Attention Enhancement Block 
For traditional convolutional neural network, convolutional layer performs convolution of 

the local patch of input maps with different filter banks. After that, corresponding convolutions 

are summed up, and then passed through a nonlinear activation function such as a ReLU to 

generate different feature maps which can capture local statistics of images. 

The traditional convolution operation mainly consists of two steps: 1) sampling using a 

convolutional kernel with size S over the input feature map. 2) summation of sampled values 

by 𝒘.The output feature map 𝑂(𝑣0) of the location 𝑣0 can be calculated as: 

    

𝑝(𝑣0) = ∑ 𝑤(𝑣𝑛) ∙ 𝑥(𝑣0 + 𝑣𝑛)

𝑣𝑛 ∈𝑆

 (1) 

𝐺(𝑎) = max (0, 𝑎) (2) 

𝑂(𝑣0) = G(p(𝑣0)) (3) 

In above equations, 𝑂(𝑣0) denotes the output feature map of the location 𝑣0. 𝑣𝑛 represents 

the n-th element in the receptive field 𝑆 . 𝐺  denotes the active function. Considering that 

Rectified Linear Units (ReLUs) can improve training speed, ReLUs is used as the active 

function in this paper. 

As shown in above equations, as the spatial resolution of the feature maps is decreased and 

the large context information is integrated, discriminative power of small object features may 

be weakened[18] in the low-level feature maps. In addition, most of the small object features 

may be lost in the high-level feature maps. Therefore, it is difficult to learn discriminative 

features for small CNV by using traditional networks, result in the performance degradation. 

Attention is helpful to focus on the interesting object by finding important feature areas from 

feature maps. Inspired by this, we adopt attention mechanism to learn discriminative features 

of CNV by paying high attention on CNV regions in the feature learning process. 

This paper proposed the attention enhancement block to introduce attention for 

discriminative feature learning. As shown in Fig. 4, the attention enhancement block mainly 

contains two parts: traditional convolutional layers and the attention constraint. We used 

traditional convolutional layers for feature learning and append a 1 × 1 convolution, followed 

by the last convolutional layer to introduce the attention constraint. The attention constraint is 



constructed by embedding discriminative attention map into the feature learning process. The 

proposed constraint in the layer L is defined to be the difference between the learned feature 

and the introduced attention map, which is formulated as: 

𝐴𝐿(𝑂, 𝜎) =  ||𝜎𝑂 − 𝑎𝑓||2 (4) 

In above equation, 𝑎𝑓 denotes the introduced attention map. Considering that CNV can be 

separated from background perfectly in the groundtruth image, we regarded groundtruth as the 

ideal attention map which is useful to contribute to the discriminative power of features [40,41].  

𝑂 is the learned feature map and 𝜎 denotes the parameters of the 1 × 1 convolution in the layer 

L. 
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Fig. 4.  Attention enhancement block 

As shown in Eq.(4 ), the attention constraint has the ability to force the learned feature maps 

to be close to the corresponding attention map in the layer L. The attention map can be regarded 

as the discriminative features, in which CNV has high attention while background has low 

attention. Therefore, the proposed block can pay high attention on CNV features in each layer. 

It can improve the discriminative ability of CNV features in the low-level feature maps and 

preserve the feature information of CNV in the high-level feature maps, improving the 

discriminative ability of CNV features, which is useful to improve the segmentation accuracy 

on small CNV. Compared with existing attention mechanism, the proposed method has two 

advantages. (1)The network architecture of the proposed method is simpler. For example, in 

[19], in order to learn attention, Squeeze-and-Excitation-Unit (SE-Unit) block is introduced in 

the basic network. In the contrast, in our network, the attention is learned via attention constraint, 

without introduction of extra units or blocks. (2)The proposed method has advantages on small 

CNV segmentation. Existing methods pay attention on discriminative region [19]. However, it 

is difficult for them to pay attention on all CNV pixels. In contrast, the proposed method can 

pay attention on each CNV pixel via attention constraint in each feature map. It is useful to 

preserve the discriminative features of CNV pixel, avoid CNV features loss in the feature 

learning process. Therefore, the proposed method is more suitable for small CNV. 

3.2 Informative Loss 
 

It’s helpful to improve the performance of the classification model trained based on 

informative samples [42,43,44]. Generally speaking, informativeness measures the ability of 

an instance in reducing the uncertainty of a learning model[43,44]. For example, in 

classification task, uncertainty has the ability to assess a training model’s certainty in 

classifying an instance. If the uncertainty of the instances is high, it implies that the current 

model does not have enough knowledge to classify these instances, and presumably, focusing 



the model on these uncertainty instances can help improve the robustness of underlying learning 

model [40]. 

classification boundary 

 

Fig. 5.  An illustration example for informative samples 

Considering that informative sample contains a high uncertainty [44], the CNV samples 

whose class membership is hard to be decided via the learning model are referred to as 

informative samples. Besides, the CNV instances that yield prediction error is also regarded as 

the informative samples. Fig. 5 gives a simple illustration example for informative samples. 

Triangle and the rectangle are two classes. The green elements near the classification boundary 

denote the samples whose class membership is hard to be decided. Meanwhile, the yellow 

elements denote the samples which are predicted incorrectly. Therefore, the yellow elements 

and the green elements are regarded as informative samples in this paper. 

In order to mine these informative instances, informative attention map is generated firstly. 

And then, informative loss is developed by exploring informative attention map, further 

improving the performance. 

In this paper, the informative attention map is calculated based on clinical prior. Here, the 

clinical prior is about features of CNV in OCT image[45]. Generally speaking, CNV in OCT 

image has the characteristics [23,45]: the global intensity of CNV is relative high and the local 

intensity variation occurred in CNV region.  

Based on above idea, we represent the clinical prior by exploring global prior and the local 

prior. The prior probability of arbitrary pixel s is calculated as follows: 
𝑃(𝑠) = 𝐺𝑃(𝑠)𝐿𝑃(𝑠) (5) 

Where 𝐺𝑃(𝑠)  denotes the global prior probability while 𝐿𝑃(𝑠)  denotes the local prior 

probability for arbitrary pixel 𝑠.  

The global prior is mainly used to capture the global intensity statistics of CNV. A histogram-

based intensity method is used to obtain global prior probability, calculated as following： 

GP(𝒔) =
Num(I(𝒔))

TNum
 (6) 

Where 𝑇𝑁𝑢𝑚  denotes the total number of the training CNV pixels while 𝑁𝑢𝑚(𝐼(𝑠)) 

denotes the number of training CNV pixels whose intensity value is 𝐼(𝑠). 

The local prior is mainly used to capture the intensity variation in a neighbor region. A 

histogram-based local contrast method is used to obtain local prior probability, calculated as 

following： 

LD(𝑠) =
∑ |𝐼(𝑡) − 𝐼(𝑠)|𝑡∈𝑅

NNum
 (7) 

LP(𝑠) =
Num(LD(𝑠))

TNum
 

(8) 



Where variable 𝐿𝐷(𝑠) is calculated as the mean of the local contrast in its neighbor region 

R, capturing the local difference among the pixels and its neighbor pixels. 𝑁𝑁𝑢𝑚 denotes the 

number of the pixels in the neighbor region R. The local prior can be calculated according to 

(8), where 𝑁𝑢𝑚(𝐿𝐷(𝑠)) denotes the number of training CNV pixels whose value is 𝐿𝐷(𝑠). 

According to above equations, we can infer that the CNV pixels will be assigned to larger 

values. 

After obtaining the prior, the informative attention model is developed to assign the attention 

for each pixel. 

ia(𝑠) = {
𝑒−(𝐹(𝑝(𝑠)−𝑝𝑏))2

, 𝑖𝑓 𝑠 belongs to CNV
  𝜖, 𝑖𝑓 𝑠 belongs to background

 (9) 

F(x) = {
0, 𝑥 ≤ 0
x, 𝑥 > 0

 
(10) 

Where 𝜖 is a small value and is set to 0.001 in our experiment. The segmentation task can be 

regarded as the binary classification problem. Variable 𝑝𝑏 denotes classification boundary and 

its value is set to 0.5 in our experiment. The class prior probability of CNV should be larger 

than 0.5 while the class prior probability of background should be less than 0.5. According to 

Eq.(9) and (10), if the class prior probability of CNV pixels is less than 0.5 or near 0.5, these 

CNV pixels are informative samples which should be assigned higher attention. 

 

 

 

 

Ground Truth informative attention 

map of corresponding 

images 

Fig. 6.  Two examples of the informative attention map 

Fig. 6 gives two examples of the informative attention map. The first row shows two slices 

with CNV and the second row shows the informative attention map of the corresponding images. 

As shown in this figure, some informative pixels such as pixels that are similar with background 

pixels have high attention values. 

In order to improve the segmentation accuracy of informative pixels, informative loss is 

developed by introducing the informative attention map. The informative loss is formulated as: 

 



𝐿(𝒘, 𝜽) = −
1

𝑁
∑ ∑ 𝑖𝑎(𝑣𝑖)𝐼{𝑦(𝑖) = 𝑡}𝑙𝑜𝑔

𝑒𝜃𝑡𝑂𝑡(𝑣𝑖)

∑ 𝑒𝜃𝑘𝑂𝑘(𝑣𝑖)𝑀
𝑘=1

𝑀

𝑡=1

𝑁

𝑖=1
 

(11) 

In above equation, 𝑖𝑎 is introduced informative attention map, 𝐼 is the indicator function. 𝑁 

is the total number of the elements in the feature map. 𝑀 is the number of classes. In this paper, 

the value of 𝑀 is 2, i.e. CNV and background. 𝜃 is the parameters of the network. 

The proposed loss is designed to improve performance by assigning high attention to 

informative samples such that their contribution to the total loss is large. As shown in above 

function, the error prediction of informative samples will lead to a large value for the objective 

function due to the introduction of informative attention. In order to reduce the loss, the model 

should focus training on a set of informative samples. Therefore, the trained model has ability 

to learn enough knowledge to classify these informative instances, further improving 

performance. 

4. Experiment 

4.1 Experiment Setting 
The experiments were performed on our 3D-OCT dataset. The data set was acquired using 

Topcon 3D-OCT-1000 (Topcon Corporation, Tokyo, Japan). Each SD-OCT volume contains 

512×1024×128 voxels. The dataset contains 67 eyes from 67 patients. Each OCT data contains 

128 B-scan images. In our experiments, we only select the B-scans with CNV. There are total 

3034 B-scan images. The range of proportions of CNV pixels is 0.000385 to 0.126.This study 

was approved by the Intuitional review board of Joint Shantou International Eye Center and 

adhered to the tenets of the Declaration of Helsinki. Because of its retrospective nature, 

informed consent was not required from subjects. The CNV was manually delineated by three 

retinal specialists, and the groundtruth of each slice was obtained by combining delineation 

results with major voting. 

To evaluate the performance of the proposed method, Dice Similarity Coefficient (DSC), 

True Positive Volume Fraction (TPVF) and False Positive Volume Fraction (FPVF) are used 

as performance indices. DSC is used to measure the accuracy of the automatic CNV 

segmentation result as compared against reference standard delineation; TPVF indicates the 

fraction of the total amount of CNV in the true segmentation by the proposed method; FPVF 

denotes the amount of CNV pixels falsely identified by the proposed method. They are 

calculated as follows: 

𝐷𝑆𝐶 = 2 ×
|𝑉𝐴 ∩ 𝑉𝑀|

|𝑉𝐴 ∪ 𝑉𝑀|
 (12) 

𝑇𝑃𝑉𝐹 =
|𝑉𝐴 ∩ 𝑉𝑀|

|𝑉𝑀|
 

(13) 

𝐹𝑃𝑉𝐹 =
|𝑉𝐴| − |𝑉𝐴 ∩ 𝑉𝑀|

|𝑉 − 𝑉𝑀|
 

(14) 

Where | ∙ | denotes volume, 𝑉𝐴 denotes the CNV region segmented by the proposed method, 

𝑉𝑀 denotes the CNV region in the groundtruth, 𝑉 denotes the total volume of the OCT data. 

In our experiment, the first 57 OCT data are used for training and the remained 10 OCT data 

are used for testing. In the test set, there are 454 B-Scan images with CNV, and the range of 

CNV pixel proportions is 0.00077 to 0.068. The remain B-scans are used for training. In order 

to enlarge the size of training data, data augmentation is performed by horizontally flipping and 

rotating image by 30°,60°. In the training process, the learning rate, batch size, training epoch 

of U-net are set as 0.001, 5, 200, respectively. 

 



4.2 Effectiveness of attention enhancement block evaluation 
In this experiment, we compare IA-net and our network without attention enhancement 

block (Informative Neural Network, INN) to demonstrate the effectiveness of proposed 

attention enhancement block. 

Table 1. Quantitative Results of IA-net and INN 

 TPVF DSC FPVF 

INN 0.9030±0.0841 0.8647±0.095 0.0044±0.0019 

IA-net 0.9384±0.0617 0.8862± 0.0785 0.0043±0.0014 

Table 1 reports the quantitative results of INN and IA-net. As observed in the table, TPVF, 

DSC, FPVF of IA-net are better than INN.Fig.8 also gives the segmentation performance on 

small objects. IA-net achieves the best performance on small CNVs.  

For IA-net, the attention enhancement block is introduced additionally. It can pay high 

attention on CNV in the feature map learning process, which is useful to improve the 

discriminative ability of CNV features in the low-level feature maps and preserve the feature 

information of CNV in the high-level feature maps. This implies that more discriminative 

features can be learned effectively by IA-net, resulting in accurate segmentation of more CNV 

pixels.  

 

4.3 Effectiveness of informative loss evaluation 
In this experiment, we compare with the cross-entropy loss, focal loss to demonstrate the 

effectiveness of proposed informative loss. Table 2 gives the comparison results. Here,U-net is 

used as the backbone network and the attention enhancement block is introduced in the U-net. 

The final loss of the network is used as weighted cross-entropy loss, focal loss and informative 

loss respectively. 

As reported in this table, IA-net achieves the best performance on DSC, TPVF. Weighted 

cross-entropy loss assigned the weight according to the prediction accuracy of pixels. The 

pixels which are predicted incorrectly will be assigned a high weight. Different from it, in our 

loss, we only focus CNV pixels. The CNV pixels which are difficult to be predicted (the point 

near the classification boundary in Fig. 5) and the CNV pixels which are predicted incorrectly 

will be assigned high weight. Therefore, the proposed method achieved better TPVF and DSC 

than weight cross-entropy loss. Focal loss has the ability to deal with hard examples. However, 

its performance is independent on the manual tuning which is time-consuming. Different from 

focal loss, the proposed informative can mine the informative samples and assign the attention 

value to each sample automatically, eliminating manual parameters tuning. In addition, the 

proposed method only focuses on the hard samples which belong to CNV, result in better TPVF. 

Table 2. Quantitative Results of different loss 

 TPVF DSC FPVF 

Weighted Cross-

entropy loss 

0.9087±0.0887 0.8639±0.093 0.00425±0.0013 

Focal loss 0.9130±0.0724 0.8658±0.081 0.0042±0.0012 

Informative loss 
0.9384±0.0617 0.8862± 0.0785 0.0043±0.0014 

 

 
 
 



4.4 Comparison with other segmentation method 

In this experiment, we also compare IA-net with existing CNV segmentation methods such 

as MS-CNN[26], ACM-LSP[23] ,NNCGS [3] and the backbone network U-net[33].Table 3 

shows TPVF, DSC, FPVF of different methods respectively. As shown in the table, IA-net 

obtaining better performance on TPVF, DSC and FPVF respectively. Compared with U-net, 

DSC of IA-net has been increased about 3 percentage points. 

Table 3. Quantitative Results of different methods 

 TPVF DSC FPVF 

ACM -LSP 0.840 0.5821 0.015 

MS-CNN 0.8323 0.8094 0.0075 

NNCGS 0.8212 0.8454 0.005 

U-net 0.8744 0.8556 0.0046 

IA-net 0.9384 0.8862 0.0043 

Fig.7 gives the segmentation comparison examples for small CNVs. The proposed IA-net 

achieves the best performance on small CNVs. U-net can not segment all the pixels of small 

CNVs because the feature of CNVs in high-level feature maps may be lost. Other methods can 

not achieve satisfactory performance on small CNV because it is hard to discriminate small 

CNV with limited information in the complex images. 

 

       

       

       

       
Original image ACM -LSP MS-CNN NNCGS U-net IA-net Ground truth 

Fig. 7.  Segmentation examples of small CNVs with different methods 

Among these methods, ACM-LSP can be regarded as a shallow method which introduces 

the similarity prior into the active contour model. However, it is difficult to generate accurate 

segmentation result due to the complex characteristics. Generally speaking, deep learning 



methods outperform shallow methods due to the powerful feature learning ability. Compared 

with traditional CNN, MS-CNN introduced the structure prior and multi-scale information in 

the CNN, improving the performance. However, MS-CNN is patch-based segmentation method, 

increasing the segmentation time due to the large resolution of OCT image. In addition, MS-

CNN ignores to mine informative samples, result in performance degradation of informative 

samples. It’s difficult for NNCGS to obtain accurate initial segmentation result by only using 

the handcraft feature and the shallow neural network. Therefore, the constrained graph search 

fails to achieve satisfactory segmentation result based on the inaccurate initial segmentation. 

The input of U-net is the whole image, which can reduce the segmentation time. However, the 

complicated intensity distribution of OCT images and small proportion of CNV may affect the 

effectiveness of the learned feature of U-net, resulting in the performance degradation. For 

proposed IA-net, attention enhancement block is developed to learn more discriminative 

information of CNV. In addition, informative loss is proposed to mine the informative samples 

and focus the trained model to learn enough knowledge of these samples which are difficult to 

predict by other models. Therefore, IA-net achieves best performance. 

4.5 Quantitative evaluation 

Table 1 gives the qualitative evaluation results of IA-net. From this table, we can see that IA-

net can achieve precise segmentation results, TPVF, DSC and FPVF are 0.9384,0.8662 and 

0.0043 respectively. For each image, if the proportion of CNV pixels in total pixels in image is 

less than three percentages, the CNV is small CNV. Otherwise, the CNV is large CNV. For 

small cases and large cases, DSC,TP, FP of small CNVs are 0.8351±0.0905, 0.08617± 0.0923, 

0.0038±0.0017 while large CNVs are 0.9181±0.0373, 0.9241±0.0349, 0.0049±0.0009. The 

segmentation performances on large CNVs is better than small CNVs because large CNVs have 

more enough information to be discriminated. Some typical CNV segmentation results of the 

proposed method are shown in Fig.8. As shown in this figure, most of CNV pixels can be 

segmented accurately. However, IA-net failed to achieve finer boundary segmentation. 

Compared with informative pixels in CVN region, the number of boundary pixels is too small, 

and some boundary pixels have some different characteristics with informative pixels. 

Therefore, it is difficult for the model to learn enough knowledge of these boundary pixels, 

result in the inaccurate segmentation of boundary. 
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Fig. 8.  Typical CNV segmentation results of the proposed method  

 



5. Conclusion 
This paper proposes IA-net for CNV segmentation in OCT images. The proposed method has 

ability to obtain the accurate CNV delineation result. The results will be provided to doctors. 

Based on the results, they can acquire the properties of CNV lesion, including the area, volume, 

width, height, optical density value, etc. These properties play an important role in diagnosis 

and treatment of CNV. 

The novel attention enhancement block and informative loss are developed in the proposed 

network. We evaluate the performance of the proposed method on our database. The 

experimental results demonstrate that the proposed method significantly outperforms existing 

CNV segmentation methods such as ALM-LSP[23],MS-CNN[26], NNCGS[3] and U-net. 

In the attention enhancement block, the discriminative attention map is embedded to guide 

the feature map learning process. Traditional methods fail to specially focus small CNV in the 

feature map learning process, result in the information loss of CNV features. The proposed 

attention enhance block is proposed to guarantee that the attention of CNV is higher while 

attention of background is lower. It is useful to improve the discriminative ability of CNV 

features in the low-level feature maps and preserve the feature information of CNV in the high-

level feature maps. Therefore, compared with traditional convolutional block, the proposed 

attention enhancement block has the ability to focus the interesting region, improve the 

discriminative ability of the learned features of small CNV, which is useful to improve the 

segmentation accuracy on small CNV. 

 The proposed informative loss is proposed to deal with informative examples effectively. 

Focal loss has the ability to deal with hard examples. However, its performance is independent 

on the manually tuned hyperparameters. It’s time-consuming to obtain the optimal 

hyperparameters. Different from focal loss [39], the proposed informative loss can assign the 

attention to each sample automatically, eliminating manual parameters tuning. In addition, the 

proposed method only focuses on the informative samples which belong to CNV. Therefore, 

the proposed loss can achieve better performance on the CNV pixels which are difficult to be 

predicted. 

 However, for 3D OCT data segmentation task, the proposed network is 2-D, ignoring 

relationship information between neighboring slices. In the future, we will extend our network 

by introducing the idea of three modules [35] to segment transaxial, coronal, and sagittal OCT 

slices. 
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