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Abstract—We propose a new Multi-scale Rotation-invariant
Convolutional Neural Network (MRCNN) model for classifying
various lung tissue types on high-resolution computed tomog-
raphy (HRCT). MRCNN employs Gabor-local binary pattern
(Gabor-LBP) which introduces a good property in image analysis
- invariance to image scales and rotations. In addition, we offer an
approach to deal with the problems caused by imbalanced num-
ber of samples between different classes in most of the existing
works, accomplished by changing the overlapping size between
the adjacent patches. Experimental results on a public Interstitial
Lung Disease (ILD) database show a superior performance of the
proposed method to state-of-the-art.

Index Terms—Interstitial Lung Disease (ILD) classification,
lung classification, convolutional neural network (CNN), Gabor
filter, local binary pattern (LBP).

I. INTRODUCTION

INTERSTITIAL lung disease (ILD) is a clinical umbrella
term referring to a diverse range of lung disorders that

involve inflammation and fibrosis of interstitium [1]. The
most common symptoms of ILD include labored breathing,
dry cough and shortness of breath, which produce seriously
adverse impact on our lives. High-resolution computed tomog-
raphy (HRCT) scan of chest is being widely used for visual-
izing the subtle texture changes of different ILD lung tissues.
HRCT image analysis algorithms are potentially capable of
providing invaluable assists on clinical radiologists in detecting
these differences [2]. Besides, in emergency radiology, for
example, radiologists have to process a wide range of image
modalities applied to different organs. They need to provide
initial diagnosis shortly without being specialized in a single
domain. This further aggravates the confusion between diverse
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Fig. 1. Three example images of each ILD type. From left to right: healthy,
emphysema, ground glass, fibrosis, micronodules.

lung tissue types [3]. Due to the inherent complexity of
interpretation of HRCT images, a computerized approach for
differentiating the lung tissues to provide helpful suggestions
would be appealing for lung specialists.

However, distinguishing between lung tissue patterns (e.g.
healthy, emphysema, fibrosis, ground glass and micronodules)
on HRCT images is of a challenging problem. Lung tissue ex-
hibits similar appearances between different tissue categories
but also great variations between different subjects for a same
tissue class (e.g. the emphysema), as illustrated in Fig. 1. This
can be reflected in sense of not only the image gray values
but also the geometric structure composed by the tissues. How
to extract effective features with which intra-class patterns are
more similar and inter-class patterns are more distinctive has
been found to be a critical but difficult task.

A. Related Works

There exist extensive lung tissue representation approaches
and they can be basically classified as hand-crafted features
and learned ones. For the learning based approaches, almost all
previous works are plagued with inferior performances caused
by imbalanced data distribution.

1) Hand-crafted features: Hand-crafted features are used
to capture the subtle variations of different lung tissue types,
furthermore, in order to describe the lung tissues at different
scales and handle the rotational variations in lung tissue
patterns, a group of multi-scale or rotation-invariant features
are proposed.

The popular texture features include, gray-level histogram
[4]–[10], filters [7], [11], run length (RLE) [8], [12], gray-level
cooccurrence matrices (GLCM) [8], [12], [13], local binary
pattern (LBP) [14], [15].

While these feature descriptors have generated promis-
ing performance, some works focus on learning multi-scale
or rotation-invariant features, multi-scale features like Riesz
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transform [16], [17], Gabor filters [4], learning-based filters
[9] are used to describe the different image details at vari-
ous scales, rotation-invariant features such as LBP [4], [18],
wavelet transform [6], [10], Gabor filters [4], histogram of
oriented gradients (HOG) [4] can eliminate the rotational
variances since no dominant orientations associated with all
lung patterns that contain complex structures.

After the feature descriptors are derived, the next stage
is to employ machine learning to assign each patch a label.
Commonly used classifiers include sparse representation [4],
[19]–[22], support vector machine (SVM) [6], [10], [11], [16],
[17], random forest (RF) [7], Bayesian classifiers [8], [23],
k-nearest neighbor (kNN) [18], linear discriminant classifier
[14], standard Gaussian Mixture Model (GMM) [24], Boosted
decision tree (BDT) [25]. For clinical experts, they can utilize
prior knowledge to extract representative information, but as
the domain background varies, another group of features are
needed to accommodate the new domain variations, this would
be inaccessible when there are lots of clinical domains to be
analyzed.

2) Feature learning: Feature learning is a set of techniques
that can exploit more descriptive features from raw data and
avoid the domain-specific problem.

Among the various ways of feature learning, it has been
recently shown that approaches based on deep learning have
achieved good performance in many computer vision and
machine learning problems [26]–[29]. For lung tissue classifi-
cation, several works have used deep learning to automatically
extract useful information from data: multi-scale features
produced by Gaussian restricted Boltzmann machine (GRBM)
are used for SVM classification [30]; the convolutional classi-
fication restricted Boltzmann machine (RBM), a combination
of convolutional RBM and classification RBM, is introduced
for discriminative feature learning [31], [32].

If provided with sufficient annotated samples, CNNs are
capable of learning more informative features, this is be-
cause that CNNs concatenate the feature extraction stage and
classification stage as a integral pipeline and create synergy
through close interactions, so both stages are optimized jointly
toward the higher classification performance. CNNs have
popularized the topic of deep learning in computer vision
research. Through the use of CNN, great achievements have
been made in the classification of natural images [33], [34]. In
addition, CNNs have been used in many medical applications,
such as mitosis detection in breast histology images [35],
[36], magnetic resonance imaging (MRI) based knee cartilage
segmentation [37], infant brain image segmentation [38], AD
and MCI diagnosis [39], characterization of lung nodule
malignancy [40], lung tissue pattern classification [41]–[45].
Despite the fact that CNNs are capable of learning high-level
features, they cannot learn multi-scale and rotation-invariant
representation of lung tissue patterns, which are significantly
beneficial for classifying different lung categories.

3) Multi-scale rotation-invariant CNN: to combine the
multi-scale and rotation-invariant superiorities in hand-crafted
features with the advantage of supervised high-level features
in CNNs, we propose to use multi-scale and rotation-invariant
convolutional neural network (MRCNN) to learn image rep-

resentations, this is mainly based on the following considera-
tions: during CT scanning, slight pose variations of the patients
may cause the lung CT images to be rotationally biased.
Besides because the lung tissue patterns contain complex
structures, no dominant direction could be associated with
all lung tissue patterns, thus the rotation-invariant features are
expected; however, CNNs are not actually invariant to large
rotations of the input data [46], [47]. On the other hand, since
breathing has a large effect on lung volume size, different
lung details are displayed at various scales on computed
tomography (CT) imaging, so multi-scale analysis is needed
to get comprehensive description. Considering the facts stated
above, lung tissue patterns may be better represented by multi-
scale rotation-invariant features rather than gray-level images.
Gabor LBP images are one of such features. First, LBP feature
is able to describe the spatial structure of local lung image
texture. Second, multi-scale Gabor filters decompose gray-
level images into several sub-images that preserve valuable
information at different scales. Third, in order to reduce
rotation variations, rotation-invariant Gabor filter and LBP
characterize lung tissue patterns. These Gabor LBP images
are concatenated to multiple channels of the inputs in CNN
to learn multi-scale high-level features. Due to the fact that
the Gabor LBP images are rotation-invariant, thus the learned
CNN features are also rotation-invariant.

4) Imbalanced data distribution: Besides, we notice a com-
mon problem that emphysema and ground glass tissues based
on the same database [48] have fewer samples, which leads
to their underrepresentation in most models and relatively
suboptimal performance. For example kNN would have the
lower classification performance of the minority class. This
is because the majority class would probably dominate the
neighborhood of a test sample even considering distance
measurement; SVM and CNN’s objective functions are to
maximize the classification accuracy which would naturally
focus on the majority class. SVM [4], [6], [16], [30], kNN [4],
and CNN [41] on the same database prove this conclusion.

There exist data-level methods which can handle imbal-
anced data distribution by resampling the data space, like
oversampling or synthetic minority over-sampling technique
(SMOTE) [49]. Unfortunately, they would cause the model
overfitting [50] or over generalization [51].

B. Our Contributions
In this paper, we present a multi-scale and rotation-invariant

convolutional neural network (MRCNN) which is capable
of classifying the lung texture pattern more accurately. We
also propose a technique to deal with the imbalanced data
problem, which is accomplished by changing the overlapping
size of adjacent patches. Our major contributions are detailed
as below.

First, each image patch is classified by a MRCNN model
in order to achieve a better classification accuracy based
on several considerations. First, motivated by the success of
Gabor LBP representations in lung tissue classification, we
investigate them into an end-to-end system that employs a hier-
achical architecture for transforming the low-level representa-
tions of input images into the high-level structural information.
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Second, it can detect complementary features on the basis of
multi-scale images which could provide a rich and effective
representation of lung tissue patterns. Finally, lung tissue
patterns contain complex structures that no dominant direction
could be associated with all lung patches. Meanwhile, CNN
is vulnerable to rotation variations, which presumably reduces
its predictive power. In our approach, we use rotation-invariant
images as the inputs of CNN, and therefore, the learned CNN
features are also rotation-invariant.

Second, we notice a common problem among most of the
previous works: different ILD tissue categories have imbal-
anced number of samples. Any classifier being sensitive to
this data imbalance would inevitably perform poorly. We solve
this problem in the image patch preparation step by changing
the overlapping size of adjacent patches flexibly, increasing
the overlapping size to get more samples of minority classes
and decreasing the overlapping size to get fewer samples of
majority classes.

The rest of paper is organized as follows. Section II
describes the proposed tissue pattern classification MRCNN
model. Section III discusses the experimental setup and pa-
rameter settings. Section IV reports the experimental results
and discussions. Conclusions and future works are presented
in Section V.

II. METHODS

The overall framework for learning discriminative features
by CNN based on Gabor LBP images is illustrated in Fig. 2.
As Gabor LBP features have shown promising results in face
recognition [52], [53], lung classification [4], we believe multi-
scale rotation-invariant Gabor LBP images are a better choice
to act as the inputs of CNN rather than gray-level images.
CNN is an end-to-end model that optimizes the values of a
huge number of parameters in a supervised way. Gabor filter,
LBP and CNN are detailed in the following.

A. Gabor filter

Gabor filter is biologically inspired by the receptive fields
of simple cells in the primary visual cortex [54]. With good
characteristics in providing the optimized resolution in space
and frequency domains, Gabor filter has been widely used
in lung tissue patterns for image enhancement [55], feature
extraction [56], multi-scale representations [57], [58].

It is defined as follows

gs,r(x, y) =
k2s,r
σ2

exp

(
−
k2s,rz

2

2σ2

)[
exp(iks,rz)− exp(−

σ2

2
)

]
(1)

where r, s define orientation and scale of the Gabor filters,
z=(x, y) and the wave vector ks,r is defined as

ks,r = ksexp(iφr) (2)

with ks = kmax/f
s, kmax=1, f=2, φu=(rπ)/4, s=(0, 1, . . . ,

S-1), r=(0, 1, . . . , R-1), where S is the number of scales and
R is the number of orientations.

As implied in Eq. 2, we can get a group of images at various
scales by convolving with multiple sets of Gabor filters at

different scales. The image under investigation is decomposed
into sub-images at several scales, i.e., different image details
are presented at different scales.

However, being rotation-variant, Gabor filter may be not
directly appropriate to describe the complex lung tissue. To
overcome the rotation-variant shortcomings encountered in
traditional Gabor representations, all orientations of a certain
scale s are summed together [59]

gRs (x, y) =
R−1∑
r=0

gs,r(x, y) (3)

Hence, the extracted Gabor images could describe lung tis-
sue patterns without any assumption on prevailing orientations.

B. Local Binary Pattern

LBP [60] measures the differences between a pixel and its
surrounding pixels and captures the spatial structure of a local
image texture, this is especially useful to describe the various
types of lung tissue patterns.

Formally, given a pixel, its LBP code is obtained by
thresholding neighboring pixels with its intensity as follows

LBPP,R =

P−1∑
p=0

s(gp − gc)2P , s(x) =

{
1, if x > 0

0, if x <= 0
(4)

where gc represents the gray value of the center pixel and
gp (p=0, . . . , P-1) denotes the gray value of the surrounding
pixels in the circle neighborhood with a radius R and the total
number of neighbor pixels P.

The operator LBPP,R could produce 2P different values
formed by P surrounding pixels around the center pixel.
Once the image is rotated, the neighbor pixels will move
correspondingly along the perimeter of the circle around the
center pixel, so except for patterns comprised of only 0s (or
1s), the rotation will result in a different LBPP,R value. In
order to assign a unique value to the rotation-variant LBP, a
new type of LBP is proposed

LBP ri
P,R = min {ROR(LBPP,Ri)|i = 0, 1, . . . , P − 1} (5)

where ROR(x, i) performs a circular bit-wise right shift
on the P-bit number x, i times. The operator LBP ri

P,R can
be considered as a feature detector to preserve certain micro-
features in the image corresponding to the rotation-invariant
patterns [60].

C. Convolutional Neural Network

Recently, the availability of enough labeled data and the
accessibility of the high parallel computation resources pro-
vided by graphics processing units (GPUs) have make it
possible to train large CNNs. CNNs were first presented by
Lecun et al. for handwritten digit recognition [61] and have
achieved remarkable results in a wide array of computer vision
tasks [33], [34], [62]–[64]. Generally speaking, CNNs can
be seen as a variant of multilayer perceptron that can learn
hierarchical features by building high-level features from low-
level represenations with alternating convolutional layers and
subsampling layers.
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Fig. 2. Topology of MRCNN. (a) Lung tissue image is decomposed into rotation-invariant Gabor filtered images of different scales. (b) Rotation-invariant
LBP is used to further characterize the Gabor filtered images. (c) All Gabor LBP images are concatenated together as the multiple channels of CNN to learn
high-level features.

Convolutional layer is the key component of CNNs. It
exploits the stationary nature of images by convolving with
patches sampled from a image. Unlike the standard, fully
connected hidden layer, it has two important characteristics.
First, each convolutional unit receives input only from a local
area of the input. This means that each unit represents some
features of a local region of the input. Second, the units of the
convolution layer can be organized into a number of feature
maps, where all units in the same feature map share the same
weights but receive input from different locations of the lower
layer.

The output of a convolutional layer is defined as

dl+1
j = f(

∑
i

dli ∗ wl+1
ij + bl+1

j ) (6)

where * denotes the convolution operation, d(l)j denotes j-th
feature map of the l-th layer, let d0 be the 2D input image
patch, wl

ij is the connecting weight from the i-th feature map
in the layer l-1 to the j-th feature map in the l-th layer, b(l)j is
a bias added to the j-th feature map, and f(x) represents the
non-linear activation function applied to the each element of
x.

In order to reduce the number of features, subsampling
layers compute the max or mean value of a particular feature
over a region of the image. This will decrease computational
complexity, introduce invariance properties and also reduce
the chances to be overfitting. Subsampling operation will not
reduce the number of feature maps of layer l.

For mean pooling, the subsampling factor s, the output of
the element (x, y) of j-th feature map of layer l+1 is computed
as

d
(l+1)
j (x, y) =

∑s−1
m=0

∑s−1
n=0 d

(l)
j (s× x+m, s× y + n)

s2
(7)

For max pooling, the output is computed as

d
(l+1)
j (x, y) = max

(
d
(l)
j (s× x+m, s× y + n)

)
(8)

where m, n=0, . . . , s-1.
Rectified linear units (ReLU) is a layer of neurons that

use the non-saturating activation function f(x) = max(0, x)
Compared to other functions that are used to increase nonlin-
earity, such as sigmoid function f(x) = 1/(1+exp(−x)) and

hyperbolic tangent function f(x) = tanh(x), ReLU expedites
convergence of the training procedure and leads to better
solutions [33].

When training a large neural network on a small training set,
it is prone to be overfitting. Large networks are also slow to
train, making it difficult to reduce test errors by combining pre-
dictions of several different networks. Dropout is a simple way
to address these problems by randomly dropping neurons from
neural network on each training iteration [65]. These dropped
neurons do not contribute to the forward pass or participate in
the back-propagation. So every iteration, different architectures
are presented, this significantly reduces overfitting. Besides, it
is an effective regularizer to force each unit to learn useful
information by itself, and prevent the coadaptation between
units. At test time, all neurons are turned on but multiply
their outputs by the probability of average turn on rate during
training.

III. EXPERIMENTAL SETUP

A. Data

The data comes from the publicly available database of ILD
cases [48] which contains HRCT images with a slice thickness
of 1mm. 2062 2-D regions of interest (ROIs) that were
manually annotated in 113 sets of HRCT by two radiologists
with 15 and 20 years of experience at the University Hospitals
of Geneva (HUG). Following the previous works [4], [6], [19],
[22], [48], we also focus on the classification of five lung
tissue patterns-healthy (H), emphysema (E), ground glass (G),
fibrosis (F) and micronodules (M). The hand-drawn ROIs are
divided to 2D patches of 32*32 pixels and each patch must
contain at least 70% of its pixels falling inside of the annotated
ROI.

We notice a common phenomenon: if the adjacent patches
overlap with size 16*32, this will lead to imbalanced number
of patches between different lung tissue patterns-emphysema
and ground glass patterns have relative fewer patches and
would cause low classification accuracy if the classifiers such
as SVM, kNN are sensitive to the imbalanced data. Unlike oth-
er methods that attempt to design a cost-sensitive classifier or
resample the data space, we propose to change the overlapping
size between the adjacent patches, namely, for emphysema
and ground glass patterns, to increase the overlapping size
to get more samples, here we adopt 23*32; for micronodules
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TABLE I
DATA DISTRIBUTION OF EACH TISSUE CATEGORY

Tissue Category # Patients # Patches

Healthy (H) 14 4195

Emphysema (E) 9 5385

Ground Glass (G) 31 5567

Fibrosis (F) 32 3819

Micronodules (M) 15 5139

patterns, to decrease the overlapping size to get fewer samples,
here 9*32. As shown in Table I, five types of lung tissue
patterns have relatively balanced number of patches.

B. Performance evaluation

All samples are randomly partitioned to 5 equally sized
groups on patch-level. Of the 5 groups, a single group is
retained as the testing data, and the remaining 4 groups are
used as training data. The process is repeated 5 times so that
every group used exactly once as the testing data. The five
results are averaged to produce the final result.

The quantitative performance of our MRCNN model and
different models are analyzed using the metrics in Eq. 9-11.

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F −measure = 2 ∗Recall ∗ Precision
Precision+Recall

(11)

C. Parameter setting

The detailed architecture is shown in Fig. 2. We train the
network from scratch. In our experiments, 8 orientations of
Gabor filters at a single scale are summed together to form a
rotation-invariant Gabor filter, we derive Gabor representations
by convolving gray-level images with the rotation-invariant
Gabor filters at 6 scales. For every pixel p(x, y), we have 6
scales of rotation-invariant texture features, this means that
we can obtain 6 Gabor filtered images from a single gray-
level image. Next, rotation-invariant LBP to encode the Gabor
filtered images at every scale.

After that, 6 Gabor LBP images of every sample are
concatenated to form multiple channels of the inputs in CNN,
that is, the CNN architecture contains 6 input maps with size
32*32 corresponding to Gabor LBP images at 6 scales. Then
we apply three convolutional and pooling layers, the remaining
two are fully-connected. ReLU function is applied to the
output of every convolutional and fully-connected layer. The
three convolutional layers contain 128, 128 and 256 feature
maps respectively. Each of the feature maps is connected to
all of the feature maps in the previous layer through filters of
size 5*5 with a stride of one pixel. All convolutional layers
are padded with size 2*2 to keep the same shape as previous

layer, so the input units near the border can also be analyzed.
Pooling layers are followed after each convolutional layer,
they are max pooling, mean pooling and mean pooling with
kernels of size 3*3, stride 2. The two fully-connected layers
have 200-5 neurons. We use dropout rate of 0.5 in the first
fully-connected layer. The output of the last fully-connected
layer is fed into a 5-way softmax activation function which
produces the distribution of five lung tissue labels.

The weights in the network are initialized randomly from
a zero-mean Gaussian distribution with standard deviation
0.01. We update weights by stochastic gradient descent (SGD)
algorithm with a batch size of 100 examples, a momentum
0.9 and weight decay 0.004. The leaning rate is set to 3*10−4

for the first 3*104 iterations, 3*10−5 for the following 104

iterations and 1*10−5 for the last 5*103 iterations. All these
learning parameters are chosen based on experimental tests.

All the experiments were carried on a workstation (Intel
Core(TM) 3.4 GHz processor with 64 GB of RAM) and a
NVIDIA GTX 980 GPU. We implement our CNN model using
Caffe package [66].

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A. Patch-level classification

Table III shows the confusion matrix of the classification
results. All the tissue categories achieve higher than 85%
classification rates. 9.5% of emphysema images are misclas-
sified as fibrosis while 8.6% of fibrosis images are predicted
as emphysema. This is because that emphysema and fibrosis
images have very similar patterns as shown in Fig. 1. For
other three lung tissue categories-healthy, ground glass and
micronodules, the classification accuracy can be up to 90% or
higher.

Table IV summarizes the classification recall, precision and
F-measure of each lung category. Overall, the results show
relatively high performance among the different tissue classes.
Note that the relatively lower fibrosis precision is mainly be-
cause the similarities between emphysema and fibrosis patterns
and the smaller number of fibrosis patches.

We also implement the classification task on patient-level
split, as shown in the Table II. The results came out with the
classification accuracy of 79%, which is comparable to other
feature learning methods. However, a little bit worse than the
results based on hand-crafted features [4]. This may because
the deep model could work not well if training samples are not
enough, and our MRCNN model is limited by the population
size. If the dataset is large enough, the deep model should have
good generalization ability either clear separation between the
training and testing or not.

We visualize the learned features as shown in Fig. 3.
Although there are no recognizable structures, they are ad-
vantageous for classifying lung texture.

B. CNN configurations

Table V compares different CNN architectures in terms of
classification performance. The proposed network configura-
tion is presented in bold. In order to compare the running
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TABLE II
COMPARISON OF CLASSIFICATION ACCURACY ON BOTH

PATIENT-LEVEL AND PATCH-LEVEL

Patient-level 79%
Patch-level 90.1%

Fig. 3. Visualization of the learned features.

TABLE III
CONFUSION MATRIX OF PATCH-LEVEL CLASSIFICATION

Ground Truth Prediction (%)
H E G F M

H 89.4 2.9 3 1.1 3.6
E 2.6 86.1 0.2 9.6 1.5
G 2.3 0.2 93.4 3.3 0.8
F 1.2 10.5 3.6 83.5 1.2
M 1.9 0.6 1.1 0.6 95.8

time of one iteration, we use SGD with a mini-batch of 100
examples and every experiment is repeated 100 times.

First, we note that using zero padding improves classifica-
tion accuracy (A in comparison with B), so we employ zero
padding in other models. Zero padding the input enables us
to set the kernel width and the output size independently;
therefore networks can be defined deeper to enhance their
expressive power. Besides, the input pixels near the border
can also be well analyzed and discriminative information may
be learned.

Second, we observe that classification error decreases with
the increased CNN depth: from 2 layers in C to 3 layers in
M; however, the error rate increases in D with 4 layers. This
proves that the architecture saturates, but deeper models might
be beneficial for larger databases. Decreasing the size of the

TABLE IV
THE RECALL, PRECISION AND F-MEASURE MEASURES OF THE

PATCH-LEVEL CLASSIFICATION

H E G F M
Recall (%) 89.4 86.1 93.4 83.5 95.8

Precision (%) 90.2 89 94.1 80.3 93.9
F-measure (%) 89.8 87.5 93.8 81.9 94.8

Fig. 4. The classification recall (top) and precision (down), comparing our
MRCNN model with MR features+softmax, CNN and MCNN.

kernels to 3*3 in E reduces the performance by approximately
7% while increasing the size of kernels to 7*7 in F and 9*9
in G result in a rise of less than 1%, accompanied by a
considerable increase in training time. This indicates that 5*5
is the optimal kernel size to analyze the local structures in
lung tissues. To identify the optimal number of feature maps,
we experiment in H and I, which show that the choice in M is
the most appropriate one according to accuracy and efficiency.

Third, we set the dropout fraction to 0 in J, which leads to a
decrease of 1.6% in classification accuracy. This verifies that
dropout is an effective way to address overfitting problem.
Besides, we change the number of hidden units in fully-
connected layer, 100 in K and 400 in J respectively, yielding
results that are inferior.

C. Evaluation of MRCNN model

The framework of the proposed MRCNN approach has three
characteristics. First, multi-scale CNN features are learned
based on Gabor LBP images at different scales which would
provide a rich representation of lung tissue patterns. Second,
in order to eliminate the rotational variations in lung tissues,
rotation-invariant Gabor LBP images serve as the inputs of
CNN. Finally, CNN transforms the low-level lung tissue rep-
resentations into high-level structural features. Fig. 4 analyzes
the contribution of every characteristic by comparing the
classification performance using different combinations. MR
features+softmax: the histogram of multi-scale and rotation-
invariant Gabor LBP images is used for classification. The total
number of possible rotation-invariant LBP values is 36, so the
concatenated histogram of Gabor LBP images at 6 scales is
216 dimensional. Like the classification stage in CNN, we
use softmax regression as classifier with L2 regularization
term and inverse of regularization term 1.0; meanwhile, L-
BFGS algorithm is used in the optimization process and 1000
iterations taken for the solver to converge. CNN: CNN directly
learns from raw images instead of Gabor LBP images. MCNN:
we treat the multi-scale Gabor LBP images as the inputs of
CNN. MRCNN: multi-scale and rotation-invariant Gabor LBP
images are severed as the inputs of CNN.
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TABLE V
PERFORMANCE OF DIFFERENT CNN ARCHITECTURES. EVERY CONVOLUTIONAL LAYER IS FOLLOWED BY POOLING LAYER. THE RELU ACTIVATION

FUNCTION IS NOT SHOWN FOR BREVITY.

Model Input Conv1 Conv2 Conv3 Conv4 FC Dropout Accuracy (%) Time (ms)
A 32*32, 6 5*5, 128 5*5, 256 - - 200 0.5 86.5 27.02
B 32*32, 6 (2) 5*5, 128 (2) 5*5, 256 (2) - - 200 0.5 88.2 45.67
C 32*32, 6 (2) 5*5, 128 (2) 5*5, 256 (2) - - 200 0.5 88.2 45.67
D 32*32, 6 (2) 5*5, 128 (2) 5*5, 128 (2) 5*5, 256 (2) 5*5, 256 (2) 200 0.5 89.4 44.62
E 32*32, 6 (1) 3*3, 128 (1) 3*3, 128 (1) 3*3, 256 (1) - 200 0.5 83.2 17.10
F 32*32, 6 (3) 7*7, 128 (3) 7*7, 128 (3) 7*7, 256 (3) - 200 0.5 90.8 70.81
G 32*32, 6 (4) 9*9, 128 (4) 9*9, 128 (4) 9*9, 256 (4) - 200 0.5 90.9 119.53
H 32*32, 6 (2) 5*5, 64 (2) 5*5, 64 (2) 5*5, 128 (2) - 200 0.5 87.7 13.53
I 32*32, 6 (2) 5*5, 256 (2) 5*5, 256 (2) 5*5, 512 (2) - 200 0.5 90.8 119.95
J 32*32, 6 (2) 5*5, 128 (2) 5*5, 128 (2) 5*5, 256 (2) - 200 0 88.4 36.40
K 32*32, 6 (2) 5*5, 128 (2) 5*5, 128 (2) 5*5, 256 (2) - 100 0.5 88.9 36.19
L 32*32, 6 (2) 5*5, 128 (2) 5*5, 128 (2) 5*5, 256 (2) - 400 0.5 89.8 36.79
M 32*32, 6 (2) 5*5, 128 (2) 5*5, 128 (2) 5*5, 256 (2) - 200 0.5 90.1 36.29

Fig. 5. The classification accuracy with various number of scales S for Gabor
LBP images.

The lower performance of MR features+softmax may be-
cause the low-level Gabor LBP histograms provide the detailed
description about the individual components and are prone to
be more susceptible to signal transformations, whereas CNN
could capture high-level shape and edge interactions in lung
tissues. When directly learned from gray-level images, CNN
may be influenced by the rotational variances in all lung
tissue patterns. Besides, images at a single scale may be not
descriptive enough, thus these features are not discriminative
enough. When MCNN learns from multi-scale Gabor LBP
images, the classification performance is better than the results
from images of a single scale, this suggests that a multi-
scale approach is beneficial. When Gabor filters and LBP
are combined with rotation-invariant property, these rotation-
invariant Gabor LBP images are better representations of lung
tissue patterns, as indicated in Fig. 4;

We measure the classification accuracy based on different
number of scales S of Gabor LBP images. As shown in Fig. 5,
the classification accuracy becomes higher and higher when S
increases from 1 to 6, and is comparable when S=6, 7, 8. This
indicates the benefit of having a multi-scale representations for
high-level feature learning.

D. Comparison with different Multi-scale and Rotation-
invariant CNNs

As shown in Table VI, we compare different inputs of CNN
to learn multi-scale rotation-invariant features: proposed Multi-

TABLE VI
THE CLASSIFICATION ACCURACY WITH DIFFERENT INPUTS

OF CNNS

Input of CNN Accuracy(%)
Gabor LBP 90.1

Gabor 89.7
LBP 86.7

scale Rotation-invariant (MR) Gabor LBP images, MR Gabor
images and MR LBP images. MR Gabor LBP images are
able to enhance local intensity with the spatial information.
This is the reason why the performance of MR Gabor LBP
images is slightly better than that of MR Gabor images.
Besides, MR LBP images are another alternative. However,
their performance is inferior to the performance of proposed
MR Gabor LBP images. This is because multi-scale Gabor
filters can bring much more rich information.

To combine multiple scales of Gabor LBP images, we
investigate three fusion schemes: input fusion, feature fusion
and decision fusion. The input fusion directly concatenates
6 Gabor LBP images as multiple channels of the inputs in
CNN. The feature fusion combines features from the first
fully-connected layer in 6 networks to make a decision. The
decision fusion scheme combines the probabilistic values of 6
separately trained networks. As shown in Fig. 6, input fusion
works better than feature fusion or decision fusion, intuitively,
input fusion is a natural way to guide the network to learn
multi-scale features and reduces the chances of overfitting.
Input fusion has 1,318,400 parameters, while the latter two
methods have 7,810,560 parameters.

E. Evaluation of different balanced data distribution

We evaluate different methods to handle the imbalanced
data distribution problem. Table VII indicates the training data
distribution during five cross validation process. Original: like
the previous works on the same database, if the neighbouring
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Fig. 6. The classification recall (left) and precision (right), comparing different
fusion schemes in our model: input fusion, feature fusion and decision fusion.

patches overlap with size 16*32, we would get the imbalanced
data distribution among the five tissue types, emphysema and
ground glass patterns only have 1157, 1187 samples, whereas,
the number of micronodules patterns is 9619. Resample: the
number of micronodules overwhelms other four tissues types
in original data, which would make the MRCNN model tend
to classify the majority class, so we undersample 2800 mi-
cronodules patches during every training process. We resample
extra 1672 emphysema and ground glass patches to alleviate
the underrepresentation problem of minority classes. SMOTE:
unlike the resampleing method, we increase the number of
emphysema and ground glass pathces by SMOTE method
[49]. SMOTE method resamples the small class through taking
small class example and introduces synthetic examples along
the line segments joining its small class nearest neighbors.
Proposed: the proposed method to change the overlapping size
of adjacent patches in image patch preparation step.

We adopt the MRCNN model to classify the five lung tissues
and make a classification performance comparison between the
imbalanced data and different balanced data in Table VII. As
shown in Fig. 7, emphysema and ground glass patterns have
much lower classification recall and precision values compared
to the resampled data, this is because that emphysema and
ground glass patterns are underrepresented in our model due
to the relatively small number of samples. By resampling the
minority classes and undersample majority class, we could
get a balanced data distribution. MRCNN model could learn
discriminative representation of every tissue type, this could
account for the higher recall value of emphysema and ground
glass. Although we only have 2800 micronodules instances,
classification recall in micronodules is slightly affected and
classification precision in micronodules is even higher, we
can attribute the results to the relatively equal representation
of every tissue type rather than the skewed prediction of
being micronodules in the imbalanced data. SMOTE method
is another oversampling method, but our result shows that a
dramatic decreasing performance of all tissue types. This may
be because that SMOTE method generates each minority ex-
ample without considering the neighbouring examples, which
increases the occurrences of overlapping between classes. On
the other hand, by changing the overlapping size of adjacent
patches, the emphysema and ground glass performance in-
creases significantly, this verifies the benefits of our method
to handle imbalanced data. It reduces the chances of being
overfitting in resampling method or over generalizaiton in

Fig. 7. Comparisons in recall (top) and precision (down) between imbalanced
data distribution and various balanced data distributions.

TABLE VII
TRAINING DATA DISTRIBUTION OF DIFFERENT METHODS IN

EVERY FIVE CROSS-VALIDATION PROCESS. H:HEALTHY,
E:EMPHYSEMA, G:GROUND GLASS, F:FIBROSIS,

M:MICRONODULES

METHODS # Patches(H\E\G\F\M)
Original 2830\1157\1187\2690\9619

Resample 2830\2829\2859\2690\2800
SMOTE 2830\2829\2859\2690\2800
Proposed 3356\4308\4453\3055\4111

SMOTE method.

F. Comparisons with popular hand-crafted features

The performance of our MRCNN model is compared with
the existing popular hand-crafted features: (i) LF [6], which
combined wavelet-based textures and gray-level histogram,
followed by SVM classifier; (ii) PASA [4], which used sparse
representation with reference adaption; (iii) LSRE [22], which
is based on sparse representation in a clustering-based sub-
cluster generation model and is the state-of-the-art in patch-
wise ILD tissue classification; (iv) MR-LBP+I [18], which
combines the histogram of multi-resolution rotation-invariant
LBP and histogram of intensity as features and classifies lung
tissues by kNN. It is worth noting that PASA and LSRE
used the same feature vector, which contains three types
of information: multi-scale and rotation-invariant Gabor LBP
features, intensity histogram and multi-coordinate HOG. The
feature vector is specially designed for ILD representation and
achieves good performance [4], [19], [20], [22]. We note that
the results of i− iii are obtained directly from [6], [4], [22],
which used slightly different image patches from ours.

Fig. 8 shows that the comparisons in recall and precision
between our MRCNN model on balanced data, MRCNN mod-
el on imbalanced data and the compared approaches. Under
the similarly imbalanced data distribution like the compared
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Fig. 8. Comparisons in recall (left) and precision (right) between our MRCNN
model and other popular hand-crafted features.

methods, our MRCNN model exhibits comparative perfor-
mance for healthy and fibrosis tissues and better performance
for ground glass and micronodules categories. The higher
recall of micronodules also contributes to the high precision
of ground glass. However, the emphysema recall in our model
is lower than the other compared approaches, this is mainly
because misclassification of fibrosis category as emphysema
tissue and the smaller number of emphysema patches; on the
other hand, due to that sparse representation in [4] defines five
dictionaries associated with each tissue category and labels
every image patch according to the minimum feature recon-
struction error, thus it is slightly affected by the minority data
distribution and accounts for the relatively high emphysema
recall. Although LSRE [22] uses a global sparse representation
classifier, it assigns a higher fusion weight where the images
in the subcluster belong to only a small number of classes,
this would make minority class such as emphysema to be
sufficiently represented. Recall that methods i − iv define
several complementary features and use SVM, kNN or sparse
representation as classifier, the improvement of our MRCNN
model demonstrates the advantage to simultaneously optimize
the feature representation and classification parameters as
an integral end-to-end pipeline toward better classification
performance.

The cost-sensitive characteristic of MRCNN model and the
skewed distribution of five lung tissue categories motivate us

Fig. 9. Comparisons in recall (top) and precision (down) between our
MRCNN model and the other feature learning methods.

to prepare a balanced data distribution. By altering the over-
lapping size of adjacent patches in emphysema, ground glass
and micronodules tissues, we could get the fairly balanced data
distribution as indicated in Table I. Our MRCNN model based
on balanced data leads to substantial improvements for all
tissue categories particularly in emphysema, ground glass and
micronodules patterns, which suggest the benefit of balanced
data.

G. Comparisons with other feature learning methods

To evaluate our design of MRCNN model and the benefit
of balanced data distribution, we compare the patch-level
classification performance using the following approaches:
(i) the proposed MRCNN approach on balanced data; (ii)
the proposed MRCNN model on imbalanced data; (iii) deep
CNN with gray-level images as inputs; (iv) the customized
CNN with shallow convolutional layer [41]; (v) the multi-scale
GRBM filters are convolved with image patches to produce
the feature vectors for SVM classification [30]; (vi) fine-
tuned CNN with three CT attenuation ranges as inputs [42].
Although most experiments in [42] do not require manual
delineation of the ROIs, the patch based classification is also
conducted in [42], that is exact the same as in previous state-
of-the-art work for comparisons with previous work: 31 * 31
patches are extracted from the ROI regions.

Under the similarly imbalanced data distribution of ILD
patches, our MRCNN model outperforms both the CNN and
RBM considerably in the recall of the four tissue categories
except for emphysema and all five lung tissues of precisions
as well. The multi-scale GRBM features in [30] are data-
adaptive, highly descriptive and could capture the intrinsic
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image features without manual feature design; CNN in [41]
uses supervised learning method and hence better classification
result could be expected. However, both of them are shallow
models that only contain one layer for high-level feature
representation. We notice that the deep CNN uses gray-level
images as inputs and has the same architecture of the proposed
MRCNN model. The performance comparison between deep
CNN and shallow CNN suggests the deep CNN could extract
more informatively high-level features to characterize the com-
plex lung tissue structures. On the other hand, the advantages
over deep CNN imply the benefits of multi-scale and rotation-
invariant properties of MRCNN. Furthermore, as highlighted
in [42], by rescaling the original CT image in Hounsfield
Units to three different attenuation scales, good visual dis-
tinctions among several ILD categories are captured. Since
low attenuation range is specifically designed to describe the
emphysema, the best emphysema performance can be achieved
by attenuation CNN; however, the fibrosis and micronodules
performance is marginally worse than our model. Finally, the
MRCNN on balanced data could improve the classification
performance especially for minority emphysema and ground
glass tissues.

V. CONCLUSIONS AND FUTURE WORKS

A new multi-scale rotation-invariant (MRCNN) model is
presented in this paper for classifying five lung tissue patterns.
Motivated by the success of Gabor LBP representations in
face recognition [52], [53] and lung classification [4], we
propose to treat the multi-scale rotation-invariant Gabor LBP
images as the inputs of CNN instead of the original image
as in traditional methods. This improves the classification
performance due to three reasons. First of all, unlike the hand-
crafted methods that relying on human knowledge, we directly
extract useful information from big data. The learned high-
level features are able to capture highly complex structures
and more consistently discernible. Moreover, different from
the generative feature learning models, CNN could jointly op-
timize the feature transformations and classification. Second,
the learned CNN features are from multi-scale analysis of the
image and thereore provide er description of the lung tissue
patterns. Third, to handle rotational biases discovered in the
lung tissue patterns, we propose to use rotation-invariant Gabor
LBP images as the inputs of CNN. Our method incorporate
the rotation-invariant Gabor filter and LBP and therefore the
learned CNN features are also robust to rotations.

Additionally, previous works using the ILD database have
a common problem, i.e. the data used in training has im-
balanced distribution between different lung tissue types. For
example, emphysema and ground glass patterns have limited
representations while micronodules patterns are abundant.
However, most machine learning algorithms assume balanced
distribution between different classes and could be defeated
by this skewed distribution. This is caused by the fact that
the classification power can be affected overwhelmingly by
the major class while the minor classes are ignored. Unlike
the existing methods that handle imbalanced data, such as
the resampling method or SMOTE method, we show that

changing overlapping size between neighbouring patches to
get balanced distribution helps on ILD classification. By
increasing the overlapping size to get more emphysema and
ground glass instances and decreasing the overlapping size to
get fewer micronodules instances, we get a relatively balanced
data distribution which leads to significantly better results
especially for emphysema and ground glass patterns.

Our experimental results show that learning multi-scale
information is effective for lung tissue classification. As our
future work, we plan to investigate other ways to learn multi-
scale features, e.g. replacing Gabor filter with other multi-
scale filters. Moreover, we found that CNN is important to
the classification performance, and as alternative future work
of ours, we plan to incorporate the recent progress of CNN into
our work. Finally, we will apply our model to other medical
image classification problems, e.g. breast cancer diagnosis.
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