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Abstract: Currently, there is no effective way to assess the therapeutic response of 
temozolomide (TMZ) for the glioma. In this study, the human U87MG-fLuc glioma animal 
models were set up and the antitumor efficacy of TMZ was evaluated using bioluminescence 
imaging (BLI) and MRI. Then, bioluminescence tomography (BLT) was reconstructed using 
an adaptive sparsity matching pursuit (ASMP) algorithm. Second, the expression level of the 
MMP-750 probe was examined with or without TMZ treatment using FMI. Third, the 
expression of MMP2 and MMP3 was specifically examined after treatment. The results 
showed that TMZ effectively inhibited glioma growth. The targeted imaging of MMP-750 
was decreased during the treatment of glioma with TMZ. Moreover, the MMP2 and MMP3 
expression was found to correlate with the inhibition effect of TMZ. Our study indicated that 
the therapeutic effects of TMZ can be effectively evaluated at an early stage using molecular 
imaging, and MMP targeting the fluorescence probe could be utilized for the prediction and 
assessment of the therapeutic effects of TMZ. 
© 2018 Optical Society of America under the terms of the OSA Open Access Publishing Agreement 
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1. Introduction 

Malignant gliomas are one of the most intractable and fatal cancers due to their location, 
aggressive biological behavior and invasive growth [1, 2]. Although neuroimaging and 
chemotherapy have made rapid progress in modern times, it is difficult for cancer patients to 
recover completely [3]. Glioma shows certain resistance to many chemotherapy agents (e.g., 
nitrosourea or the combination regimen procarbazine, lomustine and vincristine) [4]. Even if 
the blood-brain barrier is broken down in glioma patients, most chemotherapeutic drugs do 
not effectively infiltrate the brain [5]. 

Temozolomide (TMZ) is a novel imidazotetrazinone methylating agent. TMZ is a small 
lipophilic molecule and it can effectively cross the blood-brain barrier [6, 7]. TMZ has 
shown a schedule-dependent antitumor activity in malignant gliomas [8–12]. TMZ is 
commonly used to treat malignant brain tumors; currently there is no effective way for 
monitoring and evaluating TMZ treatment effects at the early stage. Medical imaging 
technologies, as computed x-ray tomography (CT), ultrasound (US) and magnetic resonance 
imaging (MRI), play an indispensable role in clinical practice. However, these imaging 
methods usually detect cancer in areas that are a centimeter or larger in diameter, at which 
point patients are difficult to cure. There are tremendous incentives to develop novel imaging 
technologies for the early detection of cancer. In comparison with traditional anatomical 
imaging methods, molecular imaging is unique in specificity and sensitivity. Molecular 
imaging has important clinical value in predicting the anti-tumor effect of drugs. It becomes 
an important imaging tool to diagnose diseases, evaluate therapeutic efficacies, and facilitate 
drug development and other biomedical applications as well [13–18]. However, such two-
dimensional bioluminescence imaging is incapable to provide 3-dimensional information of 
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internal features of interest, and does not reveal in-depth information. Bioluminescence 
tomography (BLT) reconstructs an internal bioluminescent source distribution from external 
optical measures which can be localized and quantified in 3D [19, 20], and BLT allows the 
integration of molecular and physiological information with anatomical information. 

Proteinases endow tumor cells with the ability to invade and metastasize to different 
tissue sites in vivo [21]. Matrix metalloproteinases (MMPs), a family of calcium-dependent 
endopeptidases [22], have been identified as one of the major proteinase systems responsible 
for extracellular proteolysis. MMPs enable tumor cells to break through basement 
membranes and invade [23]. MMPs promote tumor cell invasion by degrading extracellular-
matrix proteins, and activating signal-transduction pathways [24]. MMP activity in the tumor 
environment was dynamically assessed by using an MMPSense 750 imaging probe. 
MMPSense 750 was quenched with near-infrared fluorochromes positioned on a non-
immunogenic backbone previously designed as to sense proteinase activities directly in vivo 
in intact tumor environments [21]. This probe is a metalloprotease substrate, optically silent 
in its inactive state and highly fluorescent following MMP-mediated activation [21, 25]. Our 
previous work indicates that MMP-750 can specifically target gliomas and fluorescence 
tomography (FMT) of MMP-750 provides 3D information for the spatial localization of 
gliomas in situ, and hence works as an ideal fluorescence probe for gliomas. 

The expression level of some MMPs in cancer tissues is higher than that in normal tissues 
and the extent of expression is related to the tumor stage [26], invasiveness [27, 28], 
metastasis [29] and angiogenesis [30]. Moreover, it is reported that the expression of MMP 
family members are highly expressed in gliomas, and the expression levels are related to 
TMZ treatment [31–34]. Hence, it is interesting to study whether targeted imaging of MMP-
750 probes can predict antitumor activities of TMZ therapy. Moreover, it is known that 
MMPSense 750 can be activated by a series of MMPs, but which specific MMP members are 
functional for the regulation of TMZ treatment is still not known. 

The aims of this work are to investigate the treatment effects of TMZ using BLT on both 
xenograft and orthotopic glioma mouse models; second, the FMI of gliomas using an MMP-
750 probe was studied during TMZ treatment. Finally, the expression of MMPs specifically 
correlated with the treatment efficacy of TMZ was studied using western blot and 
immunohistochemistry (IHC) experiments. 

2. Materials and methods 

2.1 Materials and reagents 

A human U87MG-fLuc glioma cell line was obtained from the American type culture 
collection (ATCC). Culturing medium and fetal bovine serum (FBS) were purchased from 
HyClone (Thermo Scientific, USA). D-Luciferin was bought from Biotium (CA, Fremont, 
USA). Temozolomide (TMZ) was obtained from Schering-Plough Corporation (Kenilworth, 
NJ, USA). The TMZ solution (0.5 mg/µl) was prepared in dimethyl sulfoxide (DMSO). 
Before the injection, the stock drug solution was thawed, diluted in sterile saline to a final 
concentration of 0.005 mg/µl. MMP-750 was purchased from PerkinElmer (Waltham, MA, 
USA). The emission spectra peak was 775 nm, and excitation spectra peak was 749 nm. 

2.2 Cell culture 

U87MG-fLuc is a human GBM cell line. Cells were grown in Dulbecco’s modified eagle 
medium and supplemented with 10% fetal bovine serum (FBS), and were maintained under a 
humidified atmosphere of 5% CO2 at 37°C. 

2.3 Mouse glioma models 

The experiments were carried out in male BALB/c athymic nude mice, 4-5 weeks (Vital 
River Laboratory Animal Technology Corporation, Beijing, China). The mice were 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3196 



maintained under specific-pathogen-free conditions in accordance with the guidelines of the 
Institutional Animal Care and Use Committee (IACUC) at Peking University (Permit No: 
2011-0039). The experiments were carried out in accordance with the approved guidelines. 
The U87MG xenograft animal models were inoculated with 710  U87MG cells. Only single-
cell suspensions with >90% viability were used for injections. The mice were randomly 
divided into two groups (n = 10 for control group and n = 10 for TMZ group). For TMZ 
group, animals received six doses of TMZ (50 mg/kg/day) on consecutive days, starting 6 
days after tumor inoculation. At the same time, however, the control group was given an 
equal amount of 0.9% saline i.p. The tumor volume was measured with calipers as follows: 

 21 2v xy=  (1) 

where v is the tumor size, x is the large diameter of the tumor, and y is the small diameter of 
the tumor. At the same time, the weight and survival of mice were recorded during the 
experiment. 

The orthotopic tumor bearing mice (N = 20) were anesthetized by i.p. injection of sodium 
pentobarbital. After disinfection and incision of the skin, a small hole was made in the skull 
through the skin overlying the cranium. The mice were stationed in a stereotactic frame with 
an ear bar. About 610  glioma cells in a volume of 4 µl PBS were injected slowly into the 
brain, and then the scalp was closed with sutures. A Hamilton syringe (Anting Co. Shanghai, 
China) attached to the stereotaxic system was used to implant all of the tumor cells. 

2.4 TMZ treatment 

Ten days after tumor inoculation, the mice were randomly divided into two groups (n = 10 
for the control group and n = 10 for the TMZ group). The TMZ and control groups were 
administered TMZ i.p. (50 mg/kg/day) and an equal amount of 0.9% saline for 6 days, 
respectively. The mouse body weight and tumor volume were recorded every five days. To 
obtain the data, the survival rates were monitored daily and mice were euthanized at the 
appearance of severe neurological damage from tumor growth. 

2.5 Magnetic resonance imaging (MRI) 

Mice were required to be anesthetized for the image acquisition. Mice were lightly 
anesthetized with 2% isoflurane mixed with oxygen using a vaporizer (Lumic International). 
To assess the tumor size, mice underwent MRI scanning on the 10th day after completion of 
drug treatment. T1-weighted MRI images were obtained with a compact high-performance 
MRI system (1.5T, M3TM, Aspect Imaging, Israel) after injection of 0.1 ml contrast medium 
(Gadodiamide, Omniscan, Amersham) into the tail vein. In vivo multi-slice images of mouse 
brains were acquired in the axial plane (TR 6000 ms, TE 50 ms, slice thickness 0.8 mm and 
slice spacing 0.2 mm). 

2.6 In vivo bioluminescent imaging (BLI) 

For the sake of evaluating the antitumor efficacy of TMZ, BLI of the glioma-bearing mice 
was acquired every 5 days after treatment began. Before BLI was acquired, the mice were 
anesthetized and injected with D-luciferin i.p. (150 mg/kg) for 8 minutes. The data were 
collected with an IVIS Spectrum Imaging System (PerkinElmer, Germany). 

2.7 Fluorescence imaging (FMI) of MMP-750 

The MMP-750 probe was reconstituted with 1.2 mL of 1 × phosphate-buffered saline (PBS) 
before intravenous injection of animals at a dose of 2 nmol (100μL) per mouse. The in vivo 
bio-distribution of the MMP-750 probe was dynamically monitored using the IVIS Spectrum 
Imaging System (PerkinElmer, USA) at different time points after intravenous injection. 
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compared to the general subspace pursuit algorithms, which enhances the reconstruction 
accuracy and robustness. 

The procedure of the proposed algorithm was as follows: 
 

Algorithm 1: Adaptive Sparsity Matching Pursuit (ASMP) 

Input: A M N− ×  matrix, y -measurements vector, maxN -the number of maximum 

iterations allowed. 

Initialization:  0x = , the residual r y=  

Outer iteration: 
 compute the signal proxy Tv A r=  
 form the index set 

2
{ : ( ) }j v j r MτΩ = >  

 sparsity estimation 
0

( )s supp x= Ω  

 inner counter 1k =  
 (0)r r= , (0)x x=  
 Inner iteration: 
 identify supports ( 1)T ku A r −= , ( )ssupp uΛ =  

 form the supporting set ( 1)( )ksupp x −Γ = Λ  

 least squares (LS) estimation ' '

'

: ( ) 2
arg min

x supp x
b Ax y

=Γ
= −  

 prune the estimate ( )k
sx b=  

 update residual ( ) ( )k kr y Ax= −  

 ( ) ( 1)

2 2

k kr r −≤ , then 

 1k k= +  
 Else 
 ( 1)kr r −=  
  ( 1)kx x −=  
 quit the inner iteration 
 End if 
 End inner iteration 
If halting condition true maxn N≥  then 

 quit the outer iteration 
End if 
End outer iteration 

Output: Approximation x . 
 
where ( ) { : 0}isupp x i x= ≠ , s is the estimated sparsity, Ω , Λ and Γ are the subsets of 

{1, 2,..., }N , and sx denotes the s -largest components of x . 3τ = . 

2.11 Real-time PCR of MMP2 and MMP3 after treatment with TMZ 

U87MG tumor cells were cultured in vitro and treated with different concentrations of TMZ. 
RNA was extracted and cDNA was synthesized. The forward primer for MMP2 was 
GATACCCCTTTGACGGTAAGGA, and reverse primer was 
CCTTCTCCCAAGGTCCATAGC; the forward primer for MMP3 was 

                                                                           Vol. 9, No. 7 | 1 Jul 2018 | BIOMEDICAL OPTICS EXPRESS 3199 



AGTCTTCCAATCCTACTGTTGCT and reverse primer was 
TCCCCGTCACCTCCAATCC; and the forward primer for GAPDH was 
TGACTTCAACAGCGACACCCA, and the reverse primer was 
CACCCTGTTGCTGTAGCCAAA. 2-ΔΔCt was utilized for the calculation of relative gene 
expression. 

2.12 Western blot analysis of MMP2 and MMP3 after treatment with TMZ 

U87MG tumor cells were cultured in vitro and treated with different concentrations of TMZ. 
The protein was extracted and western blot analysis for the anti-mouse MMP2 (Abcam, 
ab86607) 1: 1000, anti-rabbit MMP3 (CST, #14351) 1: 1000 and anti- mouse β-tubulin 
(Santa Cruz, SC-69879) 1: 2000 was performed. Secondary antibodies were rabbit IgG 
(Santa Cruz, sc-2004) and mouse IgG (Santa Cruz, sc-2005) 1: 5000. 

2.13 Histology and immunohistochemistry 

Mice were sacrificed after the imaging experiment, and the brain and tumor tissues were 
excised, fixed, and they were processed for paraffin embedding by a standard procedure. All 
sections which included glioma cells were used for histology and immunohistochemistry. 
Continuous sections (4 µm) were obtained, and preceded for hematoxylin and eosin (H&E) 
staining. For immunohistochemistry, tissue sections (thickness of 8 µm) were immunostained 
using anti-mouse MMP2 (Abcam, ab86607) and anti-rabbit MMP3 (CST, #14351) 
antibodies. 

2.14 Statistical analysis 

The experimental data were performed using Prism 5.0 (San Diego, CA, USA). Statistical 
analysis was calculated using the Student's t-test (two-tailed). The significance of differences 
in groups was compared using Tukey-Kramer’s Multiple Comparison test. Data are 
represented as the mean ± SEM. In all tests, statistical significance was assumed to be 
p<0.05. 

3. Results 

3.1 Monitoring the anti-tumor efficacy of TMZ on the in vivo gioma tumor model 

The anti-glioma therapeutic effects of TMZ were analyzed on subcutaneous and orthotopic 
glioma mouse models by measuring the BLI and tumor volume for 20 continuous days 
during treatment. In the glioma xenograft tumor model, BLI imaging in Fig. 2(a) showed that 
the BLI light signal increased rapidly in the control group, but the BLI light signal decreased 
during TMZ treatment suggesting that TMZ can effectively inhibit tumor growth during the 
observation period. As shown in Fig. 2(b), the tumor volume was also measured and the data 
were consistent with the in vivo BLI observation confirming the treatment efficacy of TMZ. 
The mouse body weight was measured and we did not observe significant weight loss 
suggesting that the dosing regimen of TMZ was well tolerated for the tumor bearing mice. 
Moreover, mouse survival was monitored, and the prolongation of mouse survival was found 
in the TMZ treatment group compared to the control group. 
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4. Discussion 

In this work, we found that it is feasible to effectively evaluate the therapeutic effects of 
TMZ at the early stage using bioluminescence tomography (BLT). At the same time, the 
smart MMP-750 probe can be used to predict the antitumor activities of TMZ therapy. 
Finally, the expression of MMP2 and MMP3 may be involved in the regulation of 
therapeutic effects of TMZ. 

BLI is an ideal in vivo imaging method to observe the biological behavior of the tumor 
and assess the drug therapeutic efficacy at cellular levels. Edinger et al. revealed lymphoma 
growth and the efficacy of immune cell therapies using in vivo BLI [38]. The experiments of 
Folaron et al. showed the safety and efficacy of the vascular disrupting agent in experimental 
glioma models using BLI and MRI [39]. Galiger et al. assessed the efficacy of antifungals 
against Aspergillus fumigatus using BLI [40]. In this study, we evaluated the antitumor 
efficacy of TMZ treatment using BLI. It showed that TMZ effectively inhibited glioma 
growth in both subcutaneous and orthotopic human U87MG-fLuc glioma animal models. 
MRI and HE histology confirmed the in vivo BLI observation. 

Second, a multi-modality imaging method was utilized to make a more comprehensive 
assessment of TMZ treatment on gliomas. BLT utilizes in vivo optical imaging technology 
and mathematical modeling to produce three dimensional (3D) bioluminescent images. In 
combination with the bioluminescent signal of the mouse surface, we propose the 
reconstruction process of light sources using the ASMP method, which could provide 3D 
tumor volume information. Hence, we can evaluate drug treatment efficacy of TMZ more 
accurately and comprehensively with BLT. The results demonstrated that TMZ can 
effectively inhibit tumor growth and the feasibility of our methodology for localization and 
quantification of the optical imaging in vivo. It can contribute to the early diagnosis and 
better treatment of cancer, and thereby substantially improving health-related quality of life. 

Third, the expression level of the MMP-750 probe was examined on both subcutaneous 
and orthotopic human U87MG gliomas with TMZ treatment using FMI. MMPs are key 
proteolytic enzymes of tumor invasion and metastasis [41, 42]. Based on their extracellular 
matrix degradation capacity in the extracellular mediators of various tissues, MMPs can 
regulate tumor invasion and metastasis [43–47]. So we hypothesize that the expression of 
smart MMP-750 probes in the glioma can help predict antitumor activities of TMZ therapy. 
Our experimental results showed that the targeted imaging of MMP-750 was decreased in the 
glioma after treatment with TMZ compared with the control group. Our experimental results 
proved the above statement. 

Finally, MMP members were screened after treatment with TMZ. The results showed that 
MMP2 and MMP3 expression was relatively decreased in the TMZ-treated group compared 
to the control group suggesting that the chemotherapeutic effects of TMZ are possible 
through down-regulation of the expression of MMP2 and MMP3, which has a marked impact 
in tumor invasion and metastasis in both physiological and pathological processes of brain 
cancer. 

Our future work will focus on combining multiple imaging modalities, such as 
fluorescence molecular tomography (FMT), magnetic resonance imaging (MRI) and positron 
emission tomography (PET), to comprehensively assess the anti-tumor efficacy of TMZ or 
other drugs for glioma treatment to provide early prediction and assessment of therapeutic 
effects. Moreover, we will try to utilize the intelligent MMP fluorescence probe for targeted 
glioma imaging in clinical trials. At the same time, more work should focus on the in-depth 
molecular mechanism study of MMPs to provide a deeper understanding of the roles of 
MMPs in glioblastoma. The smart MMP-750 probe we used in this study is currently for 
research only. More experiments and safety evaluation will be made for the MMP-targeted 
fluorescence probes to pass FDA requirements for future clinical application. 
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