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CPFNet: Context Pyramid Fusion Network for
Medical Image Segmentation
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Abstract—Accurate and automatic segmentation of medical
images is a crucial step for clinical diagnosis and analysis. The
convolutional neural network (CNN) approaches based on the
U-shape structure have achieved remarkable performances in
many different medical image segmentation tasks. However, the
context information extraction capability of single stage is
insufficient in this structure, due to the problems such as
imbalanced class and blurred boundary. In this paper, we propose
a novel Context Pyramid Fusion Network (named CPFNet) by
combining two pyramidal modules to fuse global/multi-scale
context information. Based on the U-shape structure, we first
design multiple global pyramid guidance (GPG) modules between
the encoder and the decoder, aiming at providing different levels
of global context information for the decoder by reconstructing
skip-connection. We further design a scale-aware pyramid fusion
(SAPF) module to dynamically fuse multi-scale context
information in high-level features. These two pyramidal modules
can exploit and fuse rich context information progressively.
Experimental results show that our proposed method is very
competitive with other state-of-the-art methods on four different
challenging tasks, including skin lesion segmentation, retinal
linear lesion segmentation, multi-class segmentation of thoracic
organs at risk and multi-class segmentation of retinal edema
lesions.

Index Terms—Medical image segmentation, convolutional
neural network, context pyramid fusion network, global pyramid
guidance module, scale-aware pyramid fusion module

1. INTRODUCTION

HE semantic segmentation of medical images plays an
important role in medical image analysis, such as skin
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lesion segmentation in dermoscopy images [1], [2], retinal
linear lesion segmentation in indocyanine green angiography
(ICGA) images [3], segmentation of thoracic organs at risk in
computed tomography (CT) images [4], and retinal edema
lesion segmentation in optical coherence tomography (OCT)
images [5], [6]. Accurate and automatic target segmentation
can be used to derive quantitative assessment of pathology or
biomarkers for subsequent diagnosis, treatment planning and
disease progression monitoring.

Recently, many deep learning methods  based on
convolutional neural networks (CNN) have been applied to
medical image segmentation tasks because of their excellent
capability of feature extraction [7], [8], [9], [10].

In CNN framework consisting of stacked convolutional
layers and downsampling layers, deeper stages usually have
wider range of receptive fields and are able to capture global
context information, while shallower stages usually have local
information with higher spatial resolution features. Based on
these, many new structures based on fully convolutional
network (FCN) were proposed for semantic segmentation tasks
[71, [11], [12], [13]. Among them, U-Net [7] has achieved
remarkable performances. In the encoder-decoder structure
represented by U-Net, an original FCN is employed as the
encoder to capture high-level semantic information gradually
by stacking convolutional layers and downsampling layers. A
down-top decoder is designed to recover the spatial information
from the output of encoder stage by stage. Meanwhile, multiple
skip-connections between decoder and encoder are utilized to
make up for the fine information loss caused by downsampling,
which improve the performance significantly.

Although CNNs with U-shape structures have achieved
remarkable performances and received a lot of attention in
many medical image segmentation applications [10], [14], [15],
[16] for each single stage, the capability of context information
extraction is still insufficient.

First, on one hand, the global context information captured
by deeper stages of the encoder is gradually transmitted to
shallower layers, which may be progressively diluted since the
feature extraction ability of a single stage is weak. On the other
hand, the simple skip-connection in each stage ignores global
information and is an indiscriminate combination of local
information that will introduce irrelevant clutters and result in
misclassification of pixels. Recently, some approaches have
been proposed to try to solve these problems. FastFCN [17]
used a joint pyramid upsampling module to replace dilated
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convolutions and capture global context information.
Anatomynet [18] and DFN [19] adopted channel attention
mechanism to guide shallow stages to learn global feature
representations. GCN [20] and MultiResUNet [2] added a
larger kernel and deeper convolution layer respectively in
skip-connection to transform local semantic information to
higher-level features. Attention U-Net [21] utilized a novel
attention gate (AG) module to highlight salient features that are
useful for a particular task. However, there are few methods to
solve both problems simultaneously.

Second, in each single stage, there is no effective extraction
and utilization of multi-scale context information. When
dealing with targets with complex structures, such information
is necessary so that the structure’s surroundings are also
considered and ambiguous decisions can be avoided [22].
Recently, some methods have been proposed to explore and
integrate multi-scale context information. PSPNet [23] and
PoolNet [24] adopted multiple parallel poolings with different
kernel sizes to process high-level feature maps. DeepLab v3
[25] and CE-Net [26] adopted multiple convolution branches
with different receptive fields to improve the multi-scale
information capture ability of the model. However, in their
methods, the receptive fields cannot be dynamically adjusted to
fit the targets with different sizes. Since attention mechanism
[19],[27] has been widely used for improving model
performance, many scale-aware networks based on attention
mechanism have been proposed to overcome the above
problems. SA[28] learned to softly weight the multi-scale
features of each pixel by introducing attention module to
multi-scale inputs. AFNet [22] and SPAP [29] employed
scale-aware layers to adaptively change the sizes of the
effective receptive fields. SKNet [30] proposed a dynamic
kernel selection mechanism by employing channel attention
mechanism into multiple feature branches.

In this paper, we introduce two novel pyramidal modules
into U-shape network to solve the aforementioned problems.
Motivated by the discussion of the first problem, we design a
Global Pyramid Guidance (GPG) module, which combines
multi-stage global context information to reconstruct
skip-connection and provide global information guidance flow
for the decoder. Specifically, each stage’s skip-connection
consists of both local context information from this stage and
global context information from higher-level stages.
Meanwhile, by introducing GPG, irrelevant background noise
brought by low-level features can be suppressed. Motivated by
the discussion of the second problem and the scale-aware
mechanism, we further propose a Scale-Aware Pyramid Fusion
(SAPF) module, which consists of three parallel dilated
convolutional filters with shared weights for capturing different
scale context information and two cascaded Scale-Aware
Modules (SAMs) employing the spatial attention mechanism.
The SAPF module is embedded at the top of the backbone,
which can dynamically select the appropriate receptive fields
for targets with different scales by self-learning and fuse
multi-scale context information better.

Based on the above descriptions, we term our method
Context Pyramid Fusion Network (CPFNet). The proposed

CPFNet is applied for four challenging medical image
segmentation tasks: skin lesion segmentation in dermoscopy
images, retinal linear lesion segmentation in ICGA images,
thoracic risky organs segmentation in CT images and retinal
edema lesions segmentation in OCT images. The second task is
based on clinical datasets while the first, third and fourth tasks
are based on public benchmark datasets.

Our main contributions are summarized in three aspects as
follows:

(1) Two novel pyramidal modules including GPG module
and SAPF module are proposed to effectively fuse global and
multi-scale context information, respectively.

(2) Based on a U-shape network, the proposed GPG module
and SAPF module can be easily embedded and applied for
medical image segmentation tasks.

(3) The state-of-the-art segmentation performances for four
different challenging tasks show that the proposed CPFNet has
good generalization ability.

II. METHODS

A. Overview

Fig.1 demonstrates the proposed CPFNet, which is an FCN
based on encoder-decoder architecture and consists of four
main parts: feature encoder, GPG module, SAPF module and
feature decoder. The SAPF module is inserted at the top of the
encoder to capture multi-scale context information, while
multiple GPG modules are placed between the encoder and the
decoder to guide the fusion of the global context information
flows and decoder path features.

B. Feature Encoder

In order to get more representative feature maps, we employ
a pre-trained ResNet34 [31] as the feature extractor. For
compatibility purpose, the average pooling layer and fully
connected layers are removed. Because of the residual blocks
with shortcut mechanism, as shown in bottom right of Fig.1, the
ResNet can accelerate convergence of the network and avoid
gradient vanishing.

C. Global Pyramid Guidance module

Fig.2. Illustration of the Global Pyramid Guidance (GPG) module. Taking the
reconstructed skip-connection on Stage3 as an example, the global information
flow is transmitted to the decoder by fusing the global context information from
higher stages (Stage4 and Stage5).

From the input image, the encoder can learn global context
information including the object’s surroundings and the
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Fig.1. Overview of the proposed CPFNet. The original image is fed into the encoder composed of pre-trained ResNet34 to obtain the high-level features, and then
the multi-scale information is captured and dynamically merged by the proposed scale-aware pyramid fusion (SAPF) module. Next, the features are recovered by
the decoder and meanwhile the global context information flows are introduced by the proposed global pyramid guidance (GPG) module. Here, the decoder consists
of 3x3 convolution, bilinear interpolation up-sampling, and 1x1 convolution. Finally, the predicted score map is obtained.

category characteristics of the object [26], [32]. However,
these types of information may be progressively weakened
when they are gradually transmitted to shallower layers [24].
Besides, the original skip-connection in the U-shape network
will introduce irrelevant clutters and have semantic gap due to
the mismatch of receptive fields. In this paper, we propose a
global pyramid guidance (GPG) module to solve these
problems, which is shown in Fig.2.

In the GPG module, the skip-connection is reconstructed by
combining the feature map of this stage with the feature maps
of all higher-level stages. For example, Fig.2 shows the GPG
module on Stage 3. First, features of all stages are mapped into
the same channel space as Stage3 by a regular 3x3 convolution.
Next, the generated feature maps F, and F; are upsampled to the
same size as F, and concatenated. Then in order to extract
global context information from different levels of feature
maps, three separable convolutions [33]( D, @1, D, @2,
D,..@4 )with different dilation rates (1, 2 and 4) are
employed in parallel, where separable convolutions are used to
reduce model parameters. It’s worth noting that the number of
parallel paths and dilation rates vary with the number of fused
stages. Finally, a regular convolution is employed to obtain the
final feature map. Above all, each GPG module in different

stages can be summarized as (to simplify the formula, regular
convolution is ignored):

i=5 ik i=5 k
Gk = l.Sk(Dsconv @2l (igk(Fk ®2' )) (1)

Where G, denotes the output of GPG module inserted in
the k" stage, F, denotes the feature map of the k" stage in the
encoder, ®2"* represents the upsampling operation with rate
of 2% |
and D

sconv

C represents the operation of concatenation
@2 represents the separable dilated convolution

with dilation rate of 27" .

To reduce the cost of computation, only three GPG modules
are used in our network. By introducing multiple GPG modules
between encoder and decoder, the global semantic information
flow from high-level stages can be gradually guided to different
stages.

D. Scale-Aware Pyramid Fusion module

As has been discussed in the introduction, multi-scale
context information can improve the performance of semantic
segmentation tasks. However, how to effectively integrate such
information is a problem worth exploring. Inspired by this
problem, we propose a Scale-Aware Pyramid Fusion (SAPF)
module which is shown in Fig.3. In the SAPF module, we use
three parallel dilated convolutions with different dilation rates
of 1, 2 and 4 to capture different scale information. Note that
these different dilated convolutions have shared weights, which
can reduce the number of model parameters and the risk of
overfitting.

Fig.3. The illustration of Scale-Aware Pyramid Fusion (SAPF) module.
Multi-scale information captured by three parallel dilated convolution layers
with shared weights is dynamically fused by two scale-aware modules.

After this, we design a scale-aware module to fuse different
scale features. As shown in Fig.4, a spatial attention mechanism
is introduced to dynamically select the appropriate scale
features and fuse them by self-learning. Specifically, two
different scale features F, and F, pass through a series of
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convolutions and obtain two feature maps A , B ¢ R”*" (H:
the height of feature map, W: the width of feature map). Then
pixel-wise attention maps A , B e R"*" are generated by
softmax operator on the spatial-wise values:

A= =

B. A,
e’ +e’

eBi +€A" > 12[1,2,3,HXW] (2)

Finally, the fusion feature map is obtained as a weighted sum:

F,... = AGF, + BOF, 3)

fusion
where the element-wise product operations ( © ) are performed
between the attention maps and two scale features to get the
fused feature map F

fusion *

We employ two cascaded scale-aware modules to get the final
fusion feature of three branches. Then a residual connection
with learnable parameter « is employed to obtain the output of
the whole SAPF module.

Fig.4. The illustration of scale-aware module. Different weight maps are
applied to the features of different receptive fields through the spatial attention
mechanism.

E. Feature Decoder

In order to restore high resolution feature maps quickly and
efficiently, multiple simple decoder blocks are used in the
decoder path. The decoder restores the spatial information with
high-level features generated by the SAPF module, and
gradually fuses the global context information guided by the
GPG module via a 3 x 3 convolution as shown in Fig.1.
Following the 3x3 convolution, a bilinear interpolation is used
to upsample the fused feature maps, which can reduce the
parameters of the model and checkerboard artifacts [34]. The
output of a decoder block is obtained after 1x1 convolution.
Note that after the last decoder block, the feature map is directly
upsampled to the same size with the original input image.

F. Loss Function

A main challenge in medical image segmentation is class
distribution imbalance. In order to optimize our model further,
we employ a joint loss £, consisting of Dice loss £, and

‘tota ice

cross-entropy loss L to perform all segmentation tasks. The

formula is as follows,

L,

total — “~Dice

+ AL, @

where A is a trade-off between Dice loss and cross-entropy
loss , and is set to 1 in all our experiments. For fair comparison,
all methods in our experiments use the same loss function in
each individual task.

G. Implementation Details

The encoder of our proposed model is based on the
pre-trained ResNet34. The implementation of the proposed
CPFNet is based on the public platform PyTorch and NVIDIA
Tesla K40 GPU with 12GB memory. We use the ‘poly’
iter power

learning rate policy, where Ir = baselr x (1- ———
total _iter

the basic learning rate baselr is set to 0.01, and power 1is set to
0.9. Batch size and iteration number vary according to the
datasets. Besides, stochastic gradient descent (SGD) is adopted
to optimize our model, in which momentum and weight decay

are set to 0.9 and 0.0001 respectively. We will release our codes
on Github!.

III. EXPERIMENTS AND RESULTS

A. Skin Lesion Segmentation

1) Overview

Dermoscopy is a non-invasive imaging method which is
widely used in clinical dermatology [35]. Skin Iesion
segmentation in dermoscopy images is of great value for
automatic screening and detection of melanoma. Some
traditional approaches have been proposed to analyze the
dermoscopy images and segment the melanomas, including
clustering, thresholding and region-based active contour
models [36]. Sarker et al. [1] proposed an end point error loss
and negative log-likelihood loss based on CNN to perform the
skin lesion segmentation. MultiResUNet [2] introduced
multiple residual connection in U-Net for dermoscopy image
segmentation. However, there are still many challenges due to
the inhomogeneity of dermoscopy images, the influence of
dense hair and the blurred boundaries of lesions.
2) Dataset

The demoscopy image dataset was acquired from a public
challenge: Lesion Boundary Segmentation in ISIC-20182. The
data for this challenge were extracted from the ISIC-2017
dataset [37] and the HAMI10000 dataset [38], which were
collected from different leading clinical centers internationally
and acquired from different types of devices. The dataset
includes 2594 images including different types of skin lesions
with different resolutions. To improve the computational
efficiency of the model, we resized the image to 256192 while
maintaining the average aspect ratio. Online random left-right
flipping was applied for data augmentation.
3) Evaluation metrics

We performed 5-fold cross validation both in ablation
experiments and contrast experiments. To evaluate the
performance of model objectively, three official evaluation
metrics in the challenge, including Jaccard index (Jac), Dice
coefficient (Dice) and Accuracy (Acc) were adopted.

thttps://github.com/FENGShuanglang/CPFNet_Project
*https://challenge2018.isic-archive.com/task 1
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TABLE I
THE RESULT OF CONTRAST EXPERIMENTS AND ABLATION STUDIES ON SKIN
LESION SEGMENTATION TASK (MEAN + STANDARD DEVIATION)

Methods Jaccard(%)  Dice(%) Accuracy(%)
FCN [11] 76.62+0.315 84.92+0.425 94.52+0.303
DFN [19] 77.83+£0.602 86.01+0.579 94.92+0.531
UNet[7] 78.70+£0.317 86.58+0.376 95.06+0.251
CE-Net [26] 79.99+0.855 87.50+0.733 95.46+0.616
Attention U-Net [21] 80.26+0.442 87.06+0.501 95.33+0.325
MultiResUNet [2] 80.30+0.372 \ \

FastFCN [17] 81.71+0.740 88.98+0.690 96.71+0.610
GCN [20] 82.15+0.810 89.19+0.613 97.13+£0.572
Baseline 81.12+0.551 87.90+0.561 95.69+0.617
Baseline+SAPF_w/o_Dc  81.56+0.353 88.25+0.433 95.80+0.305
Baseline+SAPF_w/o_SA 81.79+0.425 88.46+0.532 95.92+0.359
Baseline+SAPF 82.15+0.328 88.88+0.390 96.00+0.228
Baseline-Wide 81.73+£0.376 88.41+0.438 95.90+0.342
Baseline+GPG 82.26+0.415 89.16+0.449 96.02+0.191
BaselinetGPG_w/o_Ds  81.85+0.402 88.69+0.472 95.92+0.379
CPFNet 82.86+0.421 89.89+0.510 96.30+0.206

4) Results

As show in Table I, we compare our method with other
excellent CNN based methods, including FCN [11], U-Net [7],
Attention U-Net [21], FastFCN [17], CE-Net [26], GCN [20],
DFN [19] and MultiResUNet (result as reported in [2]).
Besides, in order to verify the validity of the proposed GPG
module and SAPF module, we also conduct a series of ablation
experiments. For convenience, we call the basic U-shape model
with pre-trained ResNet34 backbone as the Baseline method.

Compared to FCN, U-Net achieves an increase of more than
2% for the main evaluation metric Jaccard index, which
benefits from skip-connections. Similarly, MultiResUNet
achieves a further improvement by matching the receptive
fields of encoder and decoder features on skip-connections. It
is worth noting that the proposed CPFNet achieves better
performance than all of the above methods. Compared with the
Baseline, the performance of the proposed CPFNet gets an
overall improvement (1.74% for Jaccard index, 1.99% for Dice
coefficient and 0.61% for Accuracy). The performance of GCN
is comparable with the proposed CPFNet for Jaccard index,
while CE-Net performs bad in this segmentation task. Fig.7
shows the visualization results of different models.

Ablation study for GPG: As shown in Table I, the addition
of the proposed GPG modules (BaselinetGPG) achieves
substantial improvement over the Baseline in terms of all three
evaluation metrics. Meanwhile, the performance of GPG
modules without separable dilated convolutions (GPG_w/o_Ds)
is worse than complete GPG, which proves that parallel
branches with different receptive fields are more conducive for

global information acquisition. To further validate the
effectiveness of the GPG modules, we compare the output of
simple skip-connections and our GPG modules by means of
feature map visualization. As can be seen from the Fig.5,
compared with simple skip-connection, the global context
information flow from the GPG module results in better
response of the segmentation target, which greatly improves the
segmentation accuracy.

Ablation study for SAPF module: As shown in Table II,
the embedding of SAPF module into Baseline (Baseline+SAPF)
also helps to improve the performance. Compared with the
Baseline, the Jaccard index increases 1.03% and reaches
82.15%. Meanwhile, the Dice and Accuracy increase from
87.90%, 95.69% to 88.88%, 96.00% respectively, which
benefits from the fact that the proposed SAPF module can
dynamically fuse multi-scale context information. To further
verify this point, we first insert a SAPF module without dilation
convolution (SAPF_w/o Dc) in the Baseline, and the Jaccard
index decreases 0.59% than the complete SAPF module, which
implies that the capture of multi-scale context information is
necessary. Second, we insert a SAPF module without
Scale-Aware module (SAPF _w/o SA) in the Baseline, which
also results in a performance reduction of 0.36% compared
with the complete SAPF module and indicates that dynamical
selection of multi-scale contextual information is more
conducive for lesion segmentation. All of these results prove
that our SAPF module can improve the segmentation
performance of the network by combining both advantages of
scale-aware mechanism and multi-scale context information
fusion.

(a) (b) (d)

Fig.5. Comparison of feature maps transferred by the skip connection before
and after insertion of GPG module. (a) Original image, (b) ground truth, (c) the

feature map before inserting GPG modules (common skip-connection) and (d)
the feature map after inserting GPG modules

(©)

Ablation study for model complexity and pre-training
model: To verify that the performance improvement of our
proposed model is not caused by increasing the model
complexity, we design a network based on the Baseline with
similar complexity to the CPFNet by adding multiple residual
blocks in decoder, which is called Baseline-Wide in Table 1.
The experiments show that our proposed CPFNet achieves
notable improvement than the Baseline-Wide (1.13% in term of
Jaccard index). Besides, our Baseline also performs better than
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Original Image GT CPFNet

Baseline

Attention U-Net U-Net GCN

Fig.7. The examples of skin lesion segmentation. The areas outlined with green and red lines represent the ground truth and the prediction results, respectively.
From left to right: original image, ground truth (GT), our CPFNet, Baseline, U-Net and GCN.

other methods listed in Table I, which benefits from the fact
that ResNet34 with pre-trained weights makes the network
easier to optimize and converge faster than that from scratch
(shown in Fig.6) and the model is more powerful to capture
useful features.

Fig.6. Comparison between the network with pre-trained weights and the one
trained from scratch.

B. Retinal Linear Lesion Segmentation

1) Overview

Retinal linear lesions, including lacquer cracks and myopic
stretch lines, are important indicators for the progress of high
myopia [39], [40], which is a major cause of visual impairment.
Indocyanine green angiography (ICGA) has been widely used
for linear lesion examination in clinical ophthalmology. The
linear lesion segmentation in ICGA image is crucial for the
prevention and diagnosis of high myopia. However, it is very
challenging due to the complex structures of the lesions and the
similar characteristics with the retinal vessels. To the best of
our knowledge, there are few studies focusing on automatic
linear lesion segmentation. Jiang et al [3] proposed an
improved conditional generative adversarial (¢cGAN) network
for linear lesion segmentation and achieved good performance.
But there still are some drawbacks such as the high complexity
of the improved cGAN model and too many hyperparamters.

2) Dataset

ICGA images (indocyanine green as fluorescer, Heidelberg
Retina Angiography 2, Heidelberg Engineering, Heidelberg,
Germany, 768 x 768 pixels) from 38 subjects (totally 76 eyes)
with linear lesions were included, which were collected in
Shanghai General Hospital from April 2017 to August 2017.
The collection and analysis of images were approved by the
Institutional Review Board of Shanghai General Hospital and
adhered to the tenets of the Declaration of Helsinki. Because
the number of subjects was small, two images collected at
different time from each eye were included in the dataset.
Multiple online random augmentation methods were used for
data augmentation, including left-right flipping, up-down
flipping, rotations from -30 degrees to 30 degrees and additive
Gaussian noise additions.
3) Evaluation metrics

We divided the data into 4 folds according to subjects and
conducted cross-validation. Jaccard index (Jac), Dice
coefficient (Dice), Accuracy (Acc), Sensitivity (Sen) and
Specificity (Spe) are adopted to verify the reliability of our
method.
4) Results

First, in order to verify the versatility of the proposed GPG
and SAPF modules, we insert these two modules into the
original U-Net [7]. As shown in Table II, with the successive
insertions of these two modules, the corresponding
performances are stably improved. When both of the two
modules are inserted, the Dice coefficient increases by nearly
9% and reaches 58.47%, and the Sensitivity increases by
11.57%. A U-Net-Wide network is designed by increasing the
number of channels, which has the similar parameter number as
U-Net+GPG+SAPF. The corresponding results in Table II
show that the remarkable improvement of segmentation
performance is not caused by the increase of parameters and
strongly demonstrate that our proposed modules can make up
for the weakness of context information capture ability in
U-Net.

Second, we compare the proposed CPFNet with the
state-of-the-art algorithms, including PSPNet [23], DFN [19]
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TABLE I
THE RESULTS OF CONTRAST EXPERIMENTS AND ABLATION STUDIES ON RETINAL LINEAR LESION SEGMENTATION TASK (MEAN * STANDARD DEVIATION)

Methods IoU(%) Dice(%) Accuracy(%) Sensitivity(%) Specificity(%)
U-Net [7] 36.35+2.08 49.58+3.02 98.71+0.05 50.8442.86 99.39+0.14
U-Net+GPG 40.66+2.88 55.98+3.47 98.87+0.12 56.73+5.33 99.41+0.09
U-Net+SAPF 41.69+£2.13 56.52+2.46 98.83+0.09 60.49+5.36 99.44+0.15
U-Net+GPG+SAPF 43.14+£3.35 58.47+4.25 98.89+0.27 62.41+£6.20 99.22+0.19
U-Net-Wide 38.86+2.68 53.9443.04 98.81+0.10 54.63+5.65 99.44+0.12
FastFCN [17] 25.62+2.53 39.03+3.37 98.62+0.10 33.2343.56 99.68+0.06
PSPNet [23] 35.98+5.44 52.69+5.86 97.80+0.27 51.4249.68 98.96+0.20
DFN [19] 37.14+4.01 54.18+4.72 98.83+0.18 54.18+4.21 99.79+0.18
MultiResUNet [2] 37.7943.03 51.39+3.37 98.85+0.12 51.81+2.38 99.52+0.19
Attention U-Net [21] 40.11+3.08 54.86+4.15 98.87+0.07 54.97+5.09 99.48+0.12
TiramisuNet [41] 42.15+4.92 59.14+4.84 98.08+0.34 57.44+6.89 99.09+0.25
cGAN [42] 42.61+5.13 59.24+5.19 98.58+0.32 67.16+8.76 99.16+0.26
GCN [20] 43.07+3.73 59.13+3.61 98.92+0.08 56.53+5.31 99.53+0.05
CE-Net [26] 47.21+4.09 62.98+3.95 99.00+0.08 61.59+6.37 99.55+0.13
Baseline 44.25+5.07 59.37+2.63 98.91+0.13 68.53+7.69 99.38+0.17
CPFNet 47.75+3.10 63.08+3.55 99.08+0.05 71.77+6.39 99.67+0.04
Original Image GT CPFNet Baseline U-Net* U-Net CE-Net

Fig.8. Examples of retinal linear lesion segmentation. The green, yellow and red regions represent the false negative (FN), true positive (TP) and false positive (FP)
regions, respectively. From left to right: original image, ground truth (GT), our CPFNet, Baseline, U-Net* (represents U-Net+GPG+SAPF), U-Net and CE-Net.

TriamisuNet [41], cGAN [42], Attention U-Net [21], FastFCN
[17], GCN [20], CE-Net [26] and our Baseline. As can be seen
from Table II, FastFCN achieves a worst result with 25.62% for
IoU. We think the possible reason is that some linear lesions are
too small and FastFCN does not have reasonable skip
connections to improve the resolution of the prediction map.
CE-Net performs comparably with the proposed CPFNet in this
task, while the performance of GCN is bad. Note that our
CPFNet outperforms other methods and reaches 47.75%,

63.08%, 99.08%, and 71.77% in Jaccard index, Dice
coefficient, Accuracy, Sensitivity and Specificity, respectively.
Compared with the Baseline, the Jaccard index, Dice
coefficient and Sensitivity remarkably increase by 3.50%,
3.71%, and 3.24%, respectively. Fig.8 shows some examples of
linear lesion segmentation results with different approaches,
which show our CPFNet is effective in this task and our
proposed GPG and SAPF modules are robust.
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C. Segmentation of Thoracic Organs at Risk

1) Overview

Radiation therapy is a selective treatment for cancer. In the
radiotherapy procedure, the first step is to delineate the target
tumor and the adjacent healthy organs, which are called as
Organs at Risk (OAR) in CT images. Conventionally, the
delineation is done manually by doctors, which is tedious and
subjective. The automatic segmentation of OAR such as
esophagus, heart, arteries, and trachea is especially challenging
because the shape and position of OAR vary greatly between
patients and the contours of OAR have low contrast in CT
images. Several methods based on Generalized Hough
Transform (GHT), atlas-registration [43] or level set [44] have
been proposed for OAR segmentation. Recently, the OAR
segmentation performance has been improved based on deep
learning [4].

2) Dataset

We applied the proposed method on the CT dataset of
Thoracic OAR from a public challenge: ISBI 2019 SegTHOR?.
The thoracic OAR in this dataset include heart, aorta, trachea
and esophagus. For different patients, the number of CT scan
slices varies from 150 to 284 with a z-resolution from 2mm to
3.7mm. Each slice has 512x512 pixels with in-plane resolution
varying from 0.90 mm to 1.37 mm per pixel. The most frequent
resolution is 0.98x0.98x2.5 mm?. In this public challenge, 60
patients (11084 slices) are randomly split into a training set (40
patients, 7390 slices) and a testing set (20 patients, 3694 slices).
3) Data Processing and Experimental Setup

In order to reduce the irrelevant information and enhance
contrast, pixel intensity normalization was performed, in which
the intensity values of all scans were truncated to [-310,400]
and linearly mapped to [0, 1]. In order to make use of the 3D
contextual information, we transformed the 3D CT data into
2.5D to train our network. Specifically, three adjacent slices
were stacked to form a 3-channel input data, and the network
output the prediction of the middle slice. We also applied
multiple data augmentations, including left-right flipping,
up-down flipping, rotations of -15 degrees to 15 degrees and
contrast normalization.

In addition, we randomly divided 40 training scans into 32
for training and 8 for validation. In order to make full use of the
dataset, we added the validation data into the network for
training in the last five epochs.

4) Results

In order to verify the reliability of our method, we submit the
test results to the official challenge website for evaluation
(evaluated with global Dice and Hausdorff distance). The
results are listed in Table I1I. Without any post-processing, our
method achieves remarkable results compared to the results of
other submissions. Compared with Zhang [45], our method
performs better for esophagus and heart segmentation, while a
little worse for trachea and aorta segmentation, probably
because we do not do any post-processing to clean up
discontinuous false predictions between slices.

In addition, we also compare with some state-of-the-art

Shttps://segthor.grand-challenge.org

CNN:s, such as FCN [11], U-Net [7], and CE-Net [26]. As can
be seen from Table III, our method still achieves excellent
results. Although the second-ranked CE-Net [26] achieves
comparable results with the proposed CPFNet, our method still
has some improvement in average Dice and Hausdorff distance.
Fig.9 shows some thoracic OAR segmentation results of
different methods, which also demonstrate that the proposed
CPFNet is suitable for OAR segmentation.

D. Retinal Edema Lesions Segmentation

1) Overview

In retinal optical coherence tomography (OCT) images, the
segmentation of lesions such as retina edema area (REA),
sub-retinal fluid (SRF) and pigment epithelial detachment
(PED), is a crucial task for automated diagnosis of diabetic
retinopathy. However, there are many challenges in multi-class
lesion segmentation: 1) The boundary of the target is blurred
and there is severe speckle noise in OCT images. 2) The data
imbalance problem between different lesion categories is very
severe. Previous studies [5], [6] were focused on single lesion
segmentation of retinal edema, and the joint segmentation for
these three lesions is still a blank.
2) Dataset

We acquired the dataset from a public competition:
Al-challenger 2018 for automated segmentation of retinal
edema lesions*. The dataset contains 85 retinal OCT cubes
(1024 x 512 x 128) with ground truth. Due to the annotation
problem, 83 OCT cubes with complete annotations were used
in the experiments, which were divided into training set (40
cubes) and test set (43 cubes) according to the subjects.
According to our statistics, PED lesion only accounts for 0.03%
of the total area, which causes a serious class imbalance
problem and makes the joint segmentation very hard. In order
to improve the efficiency of network training, the OCT cube
was resized to 512x256x128. The 2.5D data processing and
data augmentation method, the same as those applied in the
segmentation of thoracic organs at risk, were also used in this
experiment.
3) Result

We use the same indices as in the challenge to evaluate our
approach, including Dice coefficient (Dice), Accuracy (Acc),
Sensitivity (Sen) and Specificity (Spe). The proposed CPFNet
is compared with eight other excellent networks such as
FCN[11], U-Net[7], Attention U-Net [21], FastFCN[17] ,
MultiResUNet [2], DFEN[19], GCN [20] and CE-Net[26]. As
can be seen from Table IV, the proposed CPFNet achieves the
best performance. The average Dice of the proposed CPFNet is
4.43% higher than MultiResUNet [21] without global context
information, and the Dice coefficient for SRF segmentation is
notably improved by 6.59% and reaches 83.49%. It is worth
noting that although the CE-Net achieves comparable results
with the CPFNet in REA and SRF segmentation, its PED
segmentation performance is quite poor. We think that the
reason may be that the pooling operation at the top of the
CE-Net makes small PED regions indiscernible, and the same
thing happens with DFN. The average Dice coefficient of

“https://challenger.ai/
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TABLE III
PERFORMANCE COMPARISON OF THE SEGMENTATION FOR THORACIC ORGANS AT RISK
Dice (%) Hausdorff (mm)

Methods Ave  Esophagus Heart Trachea  Aorta Ave  Esophagus Heart Trachea  Aorta
FCN [11] 0.7884  0.6003 09187  0.7736  0.8609 | 0.7690 1.3443 0.3080  0.9915 0.4323
U-Net [7] 0.8567  0.7693 09110  0.8536  0.8928 1.0681 1.0496  0.7356 1.5789 0.9084
Han [46] 0.8662  0.7518 09328 0.8884  0.8919 | 0.7269  0.9267 0.2184  0.6325 1.1300
Feng [47] 0.8746  0.7603 0.9401 0.8821 09159 | 0.3757 0.6862  0.1895 0.3647 0.2623
Zhang [45] 0.8835 0.7732  0.9384  0.8939  0.9285 0.5930 1.6774  0.2089  0.2741 0.2114
Mikhail [48] 0.8837  0.7986  0.9265 0.8850  0.9245 0.5313 0.6196  0.3002  0.9340 0.2712
CE-Net [26] 0.8848  0.7927 09448  0.8667  0.9348 | 0.4536  0.6994  0.1538  0.7871 0.1741
CPFNet 0.8943  0.8120  0.9466  0.8905 0.9282 | 0.3562  0.4481 0.1460  0.5423 0.2882
Original Image GT CPFNet CE-Net U-Net FCN

Fig.9. The segmentation examples of thoracic organs at risk. The blue, green, yellow and red regions represent the trachea, heart, aorta, esophagus, respectively.
From left to right: original image (cropped for illustration), ground truth(GT. Because of no access of GT from the challenge website, for visual comparison, we
manually annotated these three images carefully according to the annotations in the training set), our CPFNet, CE-Net, U-Net and FCN.

TABLE IV
PERFORMANCE COMPARISON OF RETINAL EDEMA LESION SEGMENTATION TASK

Dice(%) Sensitivity (%) Specificity (%) Accuracy (%)
Methods Ave REA SRF PED REA SRF PED | REA SRF  PED Glob
DFN[19] 53.78 77.07 84.25 0.01 79.60 82.42  0.00 | 99.01 99.94 100.00 98.29
CE-Net [26] 54.57 80.93 82.78 0.00 86.01 80.84  0.00 | 99.03 99.94 100.00 98.24
FCN[11] 62.68 79.03 74.6 34.42 86.76 75.07 2551 | 98.51  99.95 100.00 97.84
UNet [7] 69.91 753 77.27 57.15 87.92 78.50  61.57 | 97.96  99.92 99.98 97.38
Attention U-Net [21]| 71.49 75.54 73.95 64.97 81.81 74.15 59.78 | 98.44 9991 100.00 97.48
GCN [20] 73.28 74.99 76.27 68.60 83.21 78.56  67.61 | 98.41 9991 100.00 97.46
FastFCN[17] 73.53 78.67 78.05 63.86 83.02 72.70 5426 | 98.80 99.96 100.00 98.06

MultiResUNet [2] 75.42 76.53 76.90 72.85 81.27 7798 77.20 | 9898 9991 100.00 97.76
Anatomynet [18] 71.57 81.55 7137 73.79 88.43 7242 77.83 | 98.68 99.96 99.99 98.25

Baseline 73.42 78.54 81.29 60.44 86.84 79.53  65.82 | 9851 9994 99.99 98.08
CPFNet 79.85 81.34 83.49 74.72 86.82 83.13  70.05 | 99.18 99.94 100.00 98.34
Baseline-50 76.90 79.55 7137 73.79 88.43 7242 77.83 | 98.68 99.96 99.99 98.25
CPFNet-50 80.37 80.74 84.71 75.66 91.19 82.78 9039 | 9838 99.94 99.99 97.98
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Original Image GT CPFNet

U-Net

Anatomynet CE-Net Attention U-Net

Fig.10. Examples of retinal edema lesion segmentation results with different methods, where the red, green and blue regions denote the REA, SRF and PED,
respectively. From left to right: original image (cropped for illustration), ground truth (GT), our CPFNet, U-Net, Anatomynet, CE-Net and Attention U-Net.

Anatomynet is also worse than our method, although it
achieves best Dice coefficient in REA. We think this is due to
the fact that 3D CNN can improve continuity between slices.

In order to prove that our proposed modules can still perform
well on network with more powerful backbone, we replace the
ResNet34 with deeper backbone ResNet50 as encoder in the
model. In Table IV, Baseline-50 represents Baseline with
ResNet50 as backbone and CPFNet-50 represents CPFNet with
ResNet50 as backbone. As can be seen from Table IV, although
the improvement of our proposed network is reduced, there is
still a considerable gap. The compelling improvement over the
Baseline indicates that the insertions of two proposed GPG and
SAPF modules are effective in context information capture and
integration. The corresponding visual comparisons are shown
in Fig.10.

IV. CONCLUSION

In this paper, we have proposed a novel deep learning
framework CPFNet for medical image segmentation, which
focuses on solving the weakness of global/multi-scale context
information capture and integration in U-shape networks.

The proposed network adopts ResNet34 as the feature
extractor, and two novel pyramidal modules including global
pyramid guidance (GPG) module and scale-aware pyramid
fusion (SAPF) module are designed and inserted into the
U-Shape framework to exploit and fuse rich global/multi-scale
context information.

In this paper, comprehensive experiments are performed on
different types of medical image segmentation tasks to verify
the effectiveness and generality of the proposed CPFNet,
including skin lesion segmentation, retinal linear lesion
segmentation, segmentation of thoracic organs at risk and
retinal edema lesions segmentation. Although GCN has
achieved comparable performance with the proposed CPFNet
in skin lesion segmentation, it is unable to perform well broadly
in other tasks such as retinal linear lesion segmentation and
retinal edema lesions segmentation, which shows its lack of

generality. Similarly, CE-Net performs comparably to the
proposed CPFNet in the retinal linear lesion segmentation and
the thoracic organ at risk segmentation challenge according to
the most important Dice metric. However, CE-Net does not
perform well on the skin lesion segmentation and retinal edema
lesion segmentation challenge. Our proposed CPFNet has
achieved good and consistent performances in these four
different segmentation tasks, which suggests that the proposed
CPFNet is more practicable and generalizable than other
existing methods. Especially, our proposed GPG and SAPF
modules are effective and universal, which can be easily
introduced into other encoder-decoder network. We believe
that our method can achieve better performance with further
post-processing and can be extended to other medical image
segmentation tasks, which is our near future work.
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