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Automatic Renal Cortex Segmentation Using
Implicit Shape Registration and Novel
Multiple Surfaces Graph Search

Xiuli Li, Xinjian Chen, Jianhua Yao, Xing Zhang, Fei Yang, and Jian Tian*, Fellow, IEEE

Abstract—In this paper, we present an automatic renal cortex
segmentation approach using the implicit shape registration and
novel multiple surfaces graph search. The proposed approach is
based on a hierarchy system. First, the whole kidney is roughly
initialized using an implicit shape registration method, with the
shapes embedded in the space of Euclidean distance functions.
Second, the outer and inner surfaces of renal cortex are extracted
utilizing multiple surfaces graph searching, which is extended
to allow for varying sampling distances and physical constraints
to better separate the renal cortex and renal column. Third, a
renal cortex refining procedure is applied to detect and reduce
incorrect segmentation pixels around the renal pelvis, further
improving the segmentation accuracy. The method was evaluated
on 17 clinical computed tomography scans using the leave-one-out
strategy with five metrics: Dice similarity coefficient (DSC),
volumetric overlap error (OE), signed relative volume difference
(SVD), average symmetric surface distance (Da.vg), and average
symmetric rms surface distance (D,,s). The experimental results
of DSC, OE, SVD, D,,., and D,,,, were 90.50% + 1.19%,
4.38% + 3.93%, 2.37% + 1.72%, 0.14 mm =+ 0.09 mm,
and 0.80 min + 0.64 mm, respectively. The results showed the
feasibility, efficiency, and robustness of the proposed method.

Index Terms—Implicit shape registration, multiple surfaces
graph searching, physical constraints, renal cortex, segmentation.

I. INTRODUCTION

HE KIDNEY consists of four major internal structures,
the renal cortex, renal column, renal medulla, and renal
pelvis (see Fig. 1). The renal cortical volume and thickness
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have been proven to be effective biomarkers for renal func-
tion in many clinical situations [1]-[4]. The applications in-
clude urological treatment decision-making [1], radiotherapy
planning [2], and assessment of clinical outcomes of surgery [3],
[4]. Since the information of renal cortical volume and thick-
ness plays an important role in renal function assessment, the
renal cortex segmentation is desirable for renal cortical thick-
ness measurement.

Several prior investigations [5]-[17] have addressed the
kidney segmentation on different imaging modalities. How-
ever, most of them aimed at the whole kidney segmentation
and few modeled the specific kidney structures such as the
renal column and renal cortex. Xie et al. [5] proposed a texture
and shape priors based method for whole kidney segmentation
on ultrasound (US) images. They were not able to distin-
guish the different structures within the kidney on the US
images. Another disadvantage is that the initial segmentation
curves were positioned manually. Lin et al. [6] proposed an
anatomical model based approach for whole kidney segmen-
tation on computed tomography (CT) images. Limited by the
imaging protocol, different kidney structures cannot be easily
distinguished on the CT images. Spiegel et al. [7] proposed
a technique based on nonrigid image registration and active
shape model for whole kidney segmentation on CT images. The
presented segmentation system was initialized by a seed point
at the center of gravity of the image. Freiman et al. [8] proposed
a nonparametric model constraint graph min-cut algorithm for
automatic whole kidney segmentation on CT images. Gloger
et al. [9] proposed a 3-D segmentation framework for fully
automatic kidney parenchyma on magnetic resonance imaging
(MRI) images using Bayesian concepts for probability map
generation.

In our previous work [10], we proposed a novel graph con-
struction based optimal graph search method for renal cortex
segmentation on CT images. The renal cortex segmentation
problem was handled as a multiple surfaces extraction problem.
The coarse presegmentation was accomplished with the help of
Amira [18]. The method was evaluated in terms of true positive
volume fraction (TPVF) and false positive volume fraction
(FPVF) by comparing the experimental results against manual
delineation results. Though the overall performance was pos-
itive, the cortex segmentation was often incorrect around the
renal pelvis region as stated in [10].

Described below, we will first analyze the challenges in renal
cortex segmentation due to the specific anatomical structures of
the kidney, as well as the demand of the renal cortex segmenta-
tion method. Then, we will review the multiple surfaces graph
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Fig. 1. Anatomical structures of kidney. (a) CT image of the kidney. (b) Kidney
iso-surface rendering.

search and draw forth our extensions to the method which im-
proves the renal cortex segmentation. The last will be the overall
contributions of our work.

A. Challenges in Renal Cortex Segmentation

CT imaging is widely used for kidney examination and diag-
nosis since essential anatomical information, including kidney
morphology and kidney ducts, can be readily appreciated. We
can perceive the location of kidney in abdomen and its specific
internal anatomical structures from CT image [see Fig. 1(a)] and
the surface rendering of different kidney tissues [see Fig. 1(b)].
The right kidney in Fig. 1 is located on the right side of the spine,
below the diaphragm and posterior to the liver.

In Fig. 1, we can find several special characteristics of the
kidney’s anatomical structure.

1) The boundaries with adjacent organs (e.g., liver, spine,
and muscles) are weak. Image artifacts, noise, and
various pathologies, such as tumors and nephrolithiasis
often exist.

2) The renal cortex and renal column are almost fused as
one connected component, which is due to the fact that
they have very similar intensity distributions.

3) Therenal pelvis makes the renal cortex a nonfully closed
structure.

These special characteristics make renal cortex segmentation
a challenging task. Traditional methods such as region growing
and thresholding will be likely to fail. In order to overcome
the weak boundaries, graph-based methods can be employed to
search for a global optimal solution. Countering the intensity
proximity of the renal cortex and renal column, the model-based
methods incorporating anatomical constraints are needed to sep-
arate the renal cortex and renal column. Since the renal cortex is
nonfully closed around the renal pelvis, a renal cortex refining
procedure is required to remove the nontarget region and im-
prove the renal cortex segmentation.

A novel optimal surface search method [10] had already
been applied to segment the renal cortex by simultaneously ex-
tracting its outer and inner surfaces. The optimal surface search
method starts with a coarse presegmentation of the image which
yields a robust approximate surface of the object. According
to the preceding analysis of the kidney’s anatomical structure,
the shape model based method other than the intensity based
method should be used in the coarse level kidney segmentation.
A major component of the shape model based segmentation is
the initial estimation of the model pose. Although there already
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exist several model initialization approaches as reviewed in
[19], such as the generalized Hough transform (GHT) [20],
[21], evolutionary algorithms (EA) [22], [23] and particle
filtering [24], few of them can be applied to the segmentation
of the kidney due to the special characteristics of the kidney’s
anatomical structure. In this work, we propose an implicit shape
registration method for kidney shape initialization.

B. Multiple Surfaces Graph Search

Li et al. [25] developed a 3-D/4-D graph-based optimal sur-
face detection method which is capable of detecting multiple
interacting surfaces simultaneously. As presented in [25]-[27],
the multiple surfaces graph search method starts with a coarse
presegmentation of the imaging data which yields robust ap-
proximate surfaces of the object. Then, a problem-specific graph
is constructed holding all relationships and surface cost ele-
ments, with intra-surface and inter-surface relationships rep-
resented by context-specific graph arcs. Lastly, the traditional
graph cut algorithm [28] can be applied to recover optimal sur-
faces with a low-order polynomial time complexity. Overall, the
surface segmentation problem can be modeled by a complex
multi-layer s-£ graph in which solution related costs are associ-
ated with individual graph nodes.

After analyzing the challenges in renal cortex segmentation,
we found that the original formulation of the multiple surfaces
graph search cannot be directly applied to the renal cortex seg-
mentation problem. However, one extension has already been
shown to be useful in our preliminary work [10]. In this study,
in order to better restrain the intensity proximity of the renal
cortex and renal column, we extend the multiple surfaces graph
search approach to allow for varying sampling distances and
physical separation constraints, instead of the traditional fixed
sampling distance and numerical separation constraints. After
these improvements, the multiple surfaces graph search could
better accommodate the renal cortex segmentation problem.

C. Contributions of Our Work

Overall, we present a fully automatic renal cortex segmenta-
tion framework in this paper. Compared to our previous method
[10], our novelties are as follows. 1) We employ an implicit
shape registration [29] based initialization method which makes
the renal cortex segmentation fully automatic. 2) In order to
better separate the renal cortex and renal column (detailed in
Section I-A), we extend the multiple surfaces graph search to
allow for varying sampling distances and physical separation
constraints [30], instead of the traditional fixed sampling dis-
tance and numerical separation constraints [10], [25]-[27]. 3) A
renal cortex refining procedure is further applied to detect and
diminish incorrect segmentation pixels around the renal pelvis.

II. METHOD: OVERVIEW

The proposed method is a coarse to fine segmentation ap-
proach which consists of four major steps: 1) preprocessing, 2)
initialization using implicit shape registration, 3) multiple sur-
faces graph searching, and 4) renal cortex refining. Fig. 2 shows
the framework of the proposed method. First, enhanced volume
and average kidney shape are obtained through nonlinear diffu-
sion filtering and shape model training respectively. Then, an
implicit shape registration method is applied to initialize the
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1) Pre-processing
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2) Initialization Using Implicit Shape Registration
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Fig. 2. Framework of the method.

kidney shape in the test scans. These two steps will be described
in Section III. Section IV will illustrate in detail how to use the
extended multiple surfaces graph search method to recover the
outer and inner surfaces of renal cortex. The last is to extract the
renal cortex volume based on the outer and inner surfaces, and
it will be presented in Section V.

III. INITIALIZATION USING IMPLICIT SHAPE REGISTRATION

Acting as an important role in our method, the initialization
provides a presegmented surface for the multiple surfaces graph
searching and makes our approach fully automatic. Before the
initialization, an image preprocessing procedure is applied to
enhance the CT volume and construct the average kidney shape
model.

A. Preprocessing

Preprocessing includes two parts: nonlinear diffusion fil-
tering and kidney shape model training.

1) Nonlinear Diffusion Filtering: Renal cortex segmenta-
tion is initiated by applying a nonlinear diffusion filter [31] to
smooth the image and reduce noise. The diffusion filter is de-
fined by following equations:

{

(z,y, 2) is the image pixel location and u(x, y, 2, t) is a filtered
image, where ¢ is a scale parameter. The diffusivity function
g(s) = 1 — exp (—3.6150/(s/A)%) if s > 0, and g(s) = 1
otherwise, A is the contrast parameter. A sample result of the
filter is shown in Fig. 3. We can better perceive the intensity
proximity of the renal cortex and renal column from Fig. 3(b) in
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Fig. 3. Example of the renal cortex segmentation. (a) Original image. (b) En-
hanced image using nonlinear diffusion filtering. (c¢) Final binary renal cortex
segmentation.

contrast to Fig. 3(a). The final binary renal cortex segmentation
result (detailed in Section V) is presented in Fig. 3(c) for a better
contrast effect.

2) Shape Model Training: The kidney shape model is
built from manually segmented kidneys in a training set (see
Fig. 4). First, triangulated meshes are reconstructed from the
manually labeled images using marching cubes [32]. Then, a
minimum description length (MDL) [33] approach is used to
determine point-wise correspondences for all training shapes.
Subsequently, all training shapes are aligned with affine trans-
formations. Finally, the average kidney shape (the “Average
Shape” in Fig. 2) can be obtained by ® = Y, ®;/n, where ®;
is a training surface, and » is the number of the training set.

B. Initialization Using Implicit Shape Registration

Although there already exist several model initialization ap-
proaches as reviewed in [19], few of them can be applied to
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Fig. 4. Training set: right kidney masks in three CT images (red regions).

the segmentation of kidney due to the special characteristics of
the kidney’s anatomical structure as discussed in Section [-A. In
this work, we propose an implicit shape registration method for
kidney shape initialization. Before the registration, the contour
of the kidney is first detected, to which the average shape will
be registered and the model is initiated.

1) Kidney Contour Detection: It is aimed at roughly iden-
tifying the contour of the kidney. Since the kidney is a macro-
scopic region with a relatively high value in contrast-enhanced
CT images (see Fig. 1), we apply blurring and thresholding
to generate a binary mask of the dataset, which contains sev-
eral disjointed significant regions. For the blurring, we use the
Gaussian weighted median filter [34] for its edge preservation
properties that ensure that the significant regions are well sepa-
rated after thresholding. On the other hand, the extent of fuzzi-
ness can be easily tuned through the standard deviation of the
Gaussian kernel.

Given a threshold #, the mask volume is generated as follows:

2)

where G(z,y,z) is the 3-D isotropic Gaussian kernel, i.e.,
G(z,y,z) = (1)(2m)3263)e~ " +v°+2°)/20" and o is the
standard deviation. I(x,y, ) represents the intensity of pixel
(2,9, %), and H(u) is a standard unit step function: H(u) = 1
ifu > 0, and H(u) = 0 otherwise.

According to (2), the process can be implemented in three
steps. First, we apply a threshold # to original image to generate
an initial binary mask. Second, the linear Gaussian filtering is
applied to the mask image. Finally, we use a fixed threshold at
0.5 to extract the final binary mask with significant regions. The
main advantage of this approach is the efficiency. On an appro-
priate down-sampled dataset, it can provide immediate feedback
not only in response to the change in threshold 7, but also to the
change in standard deviation . The initial value of £ is set em-
pirically at a value where 5% of all voxels are sorted out, and
the standard deviation o is set at 10 mm initially.

After the above process, the resulted binary mask typically
contains only a few disjointed significant regions including the
kidney regions and the spine region (red contours on the “Sig-
nificant Regions” in Fig. 2). Then, the right kidney can be sorted
out (the “Target Shape” in Fig. 2) by taking the three biggest re-
gions and selecting the rightmost one. This strategy works well
on all of our datasets.

2) Implicit Shape Registration: With the preceding process,
the kidney contour has been roughly identified on the binary
mask images. Since the identified kidney contour only estimates
the kidney location with incomplete shape information, this can
be perceived by comparing the target shape and source shape

Mi(x,y,2) = H(G(z,y,z) * HI(x,y,2z) — ) — 0.5)
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(a) (b)

Fig. 5. (a) Initial condition (target shape in white, source shape in red).
(b) Registration result, the transformed source shape (in green) is shown
overlaid on the target shape (in white).

©

Fig. 6. Initialized shapes. The top row is 3-D surface view, and the bottom row
is the 2-D slice view. Both the green semitransparent surfaces and the green
lines represent the initialized shapes.

in Fig. 5 (the target shape turns out to be suborbicular); a regis-
tration between the source shape (average kidney which stands
for the kidney shape information) and the target shape (detected
kidney which stands for the kidney location information) is ex-
pected to restore both the location and the shape information.
The shapes are represented in an implicit form [35], em-
bedded in the space of Euclidean distance functions (the “Target
Distance Map” and “Source Distance Map” in Fig. 2). Such a
representation has been widely used in the shape registration
task [29], [36] since it is robust, efficient and invariant to rota-
tion and translation. Let ® : 2 — RT be a Lipschitz function
that refers to the distance transform of shape S. The shape
defines a partition of the image domain §2: the region S whose
points are exactly shape (red contours on the “Target Distance
Map” and “Source Distance Map” in Fig. 2), the region R that
is inside of the shape and the background region [{2 — Rgs]|. The
following implicit shape representation is considered:

07 pE S
QS(p) = *D(p, S) <0, pe Rs (3)
+D(p,5) >0, pe[Q— Rg]

where D(p, S) refers to the minimum Euclidean distance be-
tween the point p and shape S.

Then the registration is equivalent to recovering the param-
eters © = (1,0s,...,0n) of a parametric transformation T,

such that the mean square between the target distance map and
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Fig. 7. Graph construction. (a) Triangulated surface mesh with a normal vertex. (b) Graph construction with three columns in the orange ellipse in (a). The whole
graph is composed of two sub-graphs G¢ and . The blue edges denote the intra-column arcs, while the green edges and red edges denote the inter-column arcs
of the two sub-graphs, and the brown edges between the two columns projected from the same vertex denote the inter-surface arcs. (¢) Details of the inter-surface

arcs.

source distance map is minimized. This procedure is accom-
plished with a standard volume-to-volume rigid registration
based on a medical image processing and analysis system [37]
(3DMed http://www.mitk.net/). We use gradient descent as the
optimization method, mean square as the similarity metric and
bilinear image interpolation. After registration, the recovered
transformation 7' is applied to the source kidney shape model
again, and it leads to the final kidney shape initialization as
shown in Fig. 6.

IV. MULTIPLE SURFACES GRAPH SEARCHING

Multiple surfaces graph searching is the key part in our
method whose purpose is to precisely extract the outer and
inner surfaces of the renal cortex based on the initialized kidney
shape model. The multiple surfaces graph searching can be
considered as an optimization process aimed at finding the set
of surfaces with a minimal cost. It effectively integrates the
shape information with the globally optimal 3-D delineation
capability of the graph cut method [28]. The three major
components are graph construction, cost function design and
optimal surfaces recovery. Graph construction and cost function
design are usually carried out in one step to effectively reflect
the properties and inter-relationship of the surfaces. After the
graph is constructed, the optimal surfaces can be recovered by
applying the traditional graph cut algorithm [28].

A. Graph Construction

After prerequisite segmentation of the whole right kidney sur-
face s’, a weighted directed graph G is constructed in a nar-
rowband around s’. Unlike the traditional graph construction

algorithms which built one single graph for the entire image
[25]-[27], our graph construction scheme enables the construc-
tion of different sub-graphs according to different surface prop-
erties and inter-surface relationships [10]. In this case, graph &G
consists of two sub-graphs (G, G1) which represent the outer
and inner surfaces of the renal cortex respectively. The graph
construction process is illustrated in Fig. 7. For each vertex v;
on the mesh, a column of equidistant points is sampled along the
normal direction of vertex 7 . The sample points are denoted as
Si(z);?),'i, =0,1;j=1,...,M—1;k=0,..., N; constituting
the nodes for graph GG, where ¢ is the index of the two sub-graphs
(G, G1), 7 is the index of the vertex on the surface, and & is the
index of the sampled points along the columns.

The interval of the equidistant points is the sampling distance
d. In the previous method [10], [25]-[27], all columns have
the same single fixed sampling distance as shown in Fig. 8(b).
According to the a priori information of renal cortex thick-
ness from the training set values and clinicians’ experience,
and the surface reconstruction technique [33] we use for the
shape model construction, the distance between the outer sur-
face and inner surface of one renal cortex tends to be propor-
tional to the sparsity of the local triangular mesh. As a result,
incorrect local surface propagation, such as under segmentation
as shown in Fig. 9(a) and (c) and over segmentation as shown in
Fig. 9(b) and (d) may occur with a fixed sampling distance set-
ting. To address this issue, we compute the sampling distance d;
for each column with d; = 7 L¢; ;.y/n;, where points v; and
v;, are adjacent on surface s’, L; ;. ) is the vector length from
v; to v;,, and n; is the number of points which are adjacent
to v;. The function is proportional to the sparsity of the local
triangular mesh and means that the denser the local triangular
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(a)

Fig. 8. Sampling distance. (a) The presegmented triangular mesh s’ with
normal columns. (b) Fixed sampling distance, d = 8 mm for all the columns.
(c) Varying sampling distances, d; = 10 mm for the columns on a sparser
triangular mesh (lower left triangle) and d; = 6 muin for the columns on a
denser triangular mesh (upper right triangle).

mesh, a smaller d; is used, as illustrated in Fig. 8(c). Particu-
larly, the segmentation error around the renal pelvis as shown
in Fig. 9(a) and (c) will be greatly reduced with a renal cortex
refining procedure in the following Section V.

After the sampled points are obtained, the columns in sub-
graphs GGy and (G should be formed based on their properties

So(vf) = vy — (k— (\”2——1)) dj - Ao -7y
(k=0,...,Ng— 1)

, . 4)
S1(vf) = vy — (k — (\12—1)) dj - Ap-n;

The normal direction 7; points outward, and (Ag, Ay) are
the smoothness constraints for the two sub-graphs (Gy, G1);
the symbols DA, = d; - Ag and Da, = d; - A; represent
the corresponding actual spatial smoothness constraints. These
different smoothness constraints determine different sub-graph
construction. The surfaces are searched both inward and
outward, which is different from our previous work [10]. In
contrast to the manual initialization of the kidney shape model
in our previous work [10], this search mechanism ensures
the segmentation system works well even if some part of the
automatically initialized kidney surface is located inside of the
renal cortex. The scheme is illustrated in Fig. 7(b) and (c).

In Fig. 7, there are three types of arcs in graph G as de-
noted in (5), shown at the bottom of the page, where (i. j, k)
are the indices defined above, and the three types of arcs are:
the intra-column arc £ connecting two adjacent points on the
same column (blue edges in Fig. 7); the inter-column arcs E;
connecting two points on two adjacent columns of sub-graph
G, (green edges for Ef and red edges for E7 in Fig. 7); and
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Fig. 9. Examples of under segmentation and over segmentation, the yellow
lines denote the outer surface contours of renal cortex, and the purple ones de-
note the inner surfaces accordingly, while the blue arrows indicate incorrect
local surface propagation. (a) Under segmentation of the outer surface. (b) Over
segmentation of the outer surface. (c) Under segmentation of the inner surface.
(d) Over segmentation of the inner surface.

the inter-surface arcs E° connecting two points on different
sub-graphs (brown edges in Fig. 7). Two smoothness constraints
(Ao, Ay) are designed for the inter-column arcs in each sub-
graph reflecting the allowed changes along the normal direction
7, , and separation constraints (6, *) exerted on the inter-sur-
face arcs represent the minimal (1 means lower) and maximal (u
means upper) distances to separate the two surfaces; however,
the symbols Ds, = d; - §; and D5, = d; - 6, represent the cor-
responding actual spatial separation constraints, where d; is the
varying sampling distance defined above.

In previous method [10], [25]-[27], the fixed sampling dis-
tance d was used as a unit of measure for the constraints. That
means the actual spatial smoothness constraints and spatial sep-
aration constraints are

(DAIHDAl):d'(AOaAI) (6)
(Ds,, Ds,) = d - (b1,64).

Considering the challenges in renal cortex segmentation as
discussed in Section I-A, we bring a concept of physical con-
straints into the inter-surface relationships, instead of the tradi-

NIVu,, vy I8 adjacent; ¢ = 0,1k =1,...,N;} (5)
o(vEN)), (So(vF), S1(vE))|d; - 6' < (S1(vh) — So(vf+), S1(vk) — So(vft)) < d; - 6%}

B = {(S;(v%), Si(wf " Ni=0,1;5=0,...,M—1ik=1,...,N;}
Er = {(Si(v]'f)., S.i(w(llmx(o’ka"’)
E* = {(S1(vF), So(vl
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tional numerical separation constraints to better restrain the in-
tensity proximity of the renal cortex and renal column and even-
tually separate the renal cortex and renal column. The physical
constraint will be learned from a priori renal cortex thickness:
we first define a variation of renal cortex thickness [Tiin; Z7max]
according to the training set values and clinicians’ experience
(the defined thickness range is always much bigger than the true
value), while satisfying [Ds,. Ds.] C [Tmin. Tmax]); then, we
compute the corresponding separation constraints with the for-
mulas below

& = | Lmin
dj - 61 2 Tinins ! 4
d; - 6y < Thax. § = \‘Tn)ax
T d;

"7

O]
|

where the symbol [*] denotes the ceiling function and || de-
notes the floor function. Then the actual spatial separation con-
straints are

(Ds,, Ds.) =d; - (81,64) = d; - ([T:;m-‘ 7 L%J) . (8)

¥ J

Comparing (6) and (8), the required parameters (6,6, ) in
previous method [10], [25]-[27] are determined by experience,
while the current parameters [Tiin. Tmax] are learned from a
priori information of renal cortex thickness.

B. Cost Function Design

The multiple surfaces graph searching is driven by the cost
functions associated with the graph vertices, which reflect some
properties of the relevant surfaces. All of the intra-column,
inter-column and inter-surface arcs are viewed as n-links in
the s-¢ graph [28] and assigned infinity values initially. Each
node has a weight W,;('U;?) in the weighted directed graph G,
where (1, j, k) are the indices defined above. If W;(v¥) > 0,
nodes are connected to the sink terminal ¢ by a directed edge
with weight W;(v¥), otherwise nodes will be connected to the
source terminal s by a directed edge with weight —Wi(wj’?’).
These arcs are viewed as ¢-/inks. The sink terminal ¢ and source
terminal s correspond to the background and object labels that
can be assigned to pixels, respectively.

Concretely, the node weight W;(v}) is defined below

C;(Uk),
Wi(of) :{ o (k1)
! Ci(vh) — Ci(v;" ™),

k=0
otherwise,

(€))

where the cost C (725‘) is defined with corresponding cost func-
tions. Cy(v}) and Cy(v¥) represent the two cost functions for
sub-graphs G and (1 respectively. Generally, the outer sur-
face of the renal cortex can be identified by the image intensity
differences between the kidney and surrounding regions. Con-
sequently, a relatively simple cost function—the negated gra-
dient magnitude [38] is used for detecting the outer surface of
the renal cortex
C[)(v;?) = 7|VI('U;?)|. (10)
As stated in Section I-A, since the renal cortex and renal
column have very similar intensity distributions, the traditional
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Fig. 10. Experimental results for different filters. Each column represents the
experimental results for one kidney data corresponding to the three images in
Fig. 6. From left to right, it presents a relatively low quality case (left), a rela-
tively high quality case (middle), and an average case (right). The red arrows
indicate the junctions of the renal cortex and renal column. (a)—(c) The enhanced
images from Section III-A. (d)—(f) The gradient magnitude images of (a)—(c).
(g)—(i) The Sobel edge images of (a)—(c). (j)—(1) The 3-D “sheet filter” of (a)—(c).

graph cut algorithm would segment these two different struc-
tures as one connected component (Figs. 1 and 10). We test a
few filters to separate the two structures. Fig. 10 demonstrates
the experimental results of several filters applied to the kidney
images. Comparing the three rows in Fig. 10, we find that the
experimental results vary according to the image quality, such as
image noise and inhomogeneity. Comparing the four columns
in Fig. 10, we find that the gradient magnitude filter causes de-
pression of the boundaries between the renal cortex and renal
column [see the red arrows in Fig. 10(d)—(f)]; the Sobel edge
filter also misses parts of the renal cortex inner contours [see
the red arrows in Fig. 10(g)—(i)]. To accommodate the specific
attributes of the renal cortex, an enhancement filter which can
enhance the annular renal cortex region and depress the projec-
tion shaped renal column should be adopted.

Inspired by the work of Sato et al. [39], we adopted the 3-D
“sheet filter” Fyneey for detecting the inner surface of renal
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cortex. The 3-D “sheet filter” is based on the Hessian matrix
eigenvalues of the volume intensity function combined with
isotropic Gaussian blurring to enhance the 3-D local intensity
structures. The filter is defined by the following equation:

[Az] - w(Ao; A3) -w(A1;Az), A3 <0

Finect (I) = { 0, otherwise (1 1)

where (A1, A2, A3) are three eigenvalues of the Hessian matrix
V2T satisfying Ay > A2 > As. The derivative computation
for the Hessian matrix is combined with Gaussian convolution
[40], and the standard deviation oy controls the width of the
structures. The parameter w is written as

e
(1+‘§—j‘) . M<A<O
. _ ¥
w(As; Ar) = (1 —a- &—t‘) Rl s x>0 (12)
0, otherwise

where v and « are the parameters that control the sensitivity of
the filter to the eigenvalue measures. The theoretical basis for
the filter is based on the intensity curvatures predicted for the
“sheet” structure: fissures have one large negative eigenvalue
A3 < 0 corresponding to the eigenvector normal to the fissure
plane, and two small eigenvalues A; = A2 = 0 corresponding
to the eigenvectors parallel to the plane.
Thus, we use the 3-D “sheet filter” F},..t as the cost function
for the inner surface of renal cortex
Ci(vF) = = Faeer (I(v])).

7 M

(13)

From Fig. 10(j)—(1), we find the annular renal cortex region,
especially the boundaries between the renal cortex and renal
column, is enhanced after the employment of the 3-D “sheet
filter” -Fshoct .

C. Optimal Surfaces Recovery

After the above two parts, a s-t graph G; is derived from
the weighted directed graph (. Segmentation of outer and inner
surfaces of the renal cortex is formulated as finding a minimum
closed set in the s-£ graph G ; [25]. This can be solved by com-
puting the minimum s-¢ cut of the graph using a traditional
graph cut algorithm [28], which can simultaneously get both the
optimal outer surface and inner surface of the renal cortex while
satisfying all surface constraints. Results of the extracted outer
and inner surface contours are shown in Fig. 11, optimized from
the initialized shapes in Fig. 6.

V. RENAL CORTEX REFINING

Renal pelvis makes the renal cortex a nonfully closed struc-
ture and introduces incorrect segmentation pixels around the
renal pelvis as stated in our previous work [10]. A renal cortex
refining procedure is needed to address this issue and improve
the renal cortex segmentation. In this work, the refining proce-
dure consists of the following operations.

A. Surface Volumes Subtraction and Graying

We first voxelize the outer and inner surfaces of the renal
cortex into volumes with the same dimensions and spacing as
the original CT datasets. Then, a binary renal cortex mask is
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Fig. 11. Contours of surface extraction result. Each column represents one
kidney data segmentation result, optimized from the initialized shapes in Fig. 6.
The meanings of lines in different colors are the same with Fig. 9.

obtained by subtracting the inner surface volume from the outer
surface volume. As we can see from Fig. 1(a), the intensities of
renal cortex are much different with those of renal pelvis and
the region nearby. By graying the binary renal cortex mask, we
can discover the nontarget region intuitively. A simple graying
strategy just multiplies the enhanced volume (the “Enhanced
Volume” in Fig. 2) by the binary renal cortex mask.

B. Thresholding and Connected Region Detection

After graying, a simple thresholding technique based on the
gray statistical distribution can be applied on the gray renal
cortex to remove the nontarget region around the renal pelvis.
Then, we use some morphological operations and connected re-
gion detection to fill holes and make the renal cortex a simply
connected region, which also means refining the renal cortex
segmentation results.

After the renal cortex refining procedure, the final renal cortex
segmentation results can be generated eventually. Fig. 12 dis-
plays some examples of the segmented renal cortex volume,
which are refined results of those surfaces in Fig. 11.

VI. EXPERIMENTS AND DISCUSSIONS

A. Data Sets

For this study, data was taken from a clinical CT dataset con-
taining 17 images. Each case contains 61-396 slices due to the
different cross-section spacing (0.5-2.5 mm) and the protocol of
different CT scanners. Each slice consists of 512 x 512 pixels,
while the pixel size varied from 0.62 to 0.78 mm. Our method
was implemented on a 32-bit desktop PC (2.33 GHz Core 2 and
2 GB RAM) based on the medical imaging toolkit [37] (MITK,
http://www.mitk.net/).
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Fig. 12. Renal cortex segmentation results. The red region indicates our seg-
mentation result, and the blue arrows indicate the renal pelvis. The three renal
cortex volumes correspond to the refined segmentation of those surfaces in
Fig. 11.

TABLE 1
PARAMETER SETTINGS

Steps Parameter Settings
Initialization A =10, t = 0.1, iters 30;
Using n = 16, model radius 0.3, sample number 41, landmarks 2562;
Implicit Shape o = 10mm;
Registration maxStepSize 1.0mm, minStepSize 0.2mm, maxIters 250
Multiple Outer surface: Ng = 31, Ag =1;
Surfaces Inner surface: N1 = 41, A1 = 1;
Graph M = 2562, d; € [2,10]mm, [Tmin = 2¢m, Tmaz = 20cm];
Searching of =05 a=05v=025

To allow for a quantitative evaluation of the performance of
the proposed method, the whole right kidney, the renal cortex
and the inside region of renal cortex were manually segmented
by a clinician to generate the reference images (ground truth).
The manually segmented whole kidneys were also used to
construct the average shape, while the manually segmented
renal cortexes were used to learn the variation range of renal
cortex thickness. The leave-one-out strategy was used in the
evaluation.

B. Parameter Settings

In this section we will review detailed parameter settings for
each step. In terms of efficiency, Table I lists all of the parameter
settings. Particularly, for initialization using implicit shape reg-
istration, in shape model training, the model radius, the sample
number and the landmarks were specialized for the off-the-shelf
software [33], and the training set number n was 16 due to the
leave-one-out cross validation strategy; in kidney contour detec-
tion, the initial value of £ was set empirically at a value where
5% of all voxels are sorted out; the implicit shape registration
was accomplished with our 3DMed software [37], the default
values were used for all parameters except the maximal and
minimum step size and the maximal iterations. For multiple sur-
faces graph searching, in graph construction, the sampling dis-
tance d; varied from 2 to 10 mm dependent on the sparsity of the
local triangular mesh, and for the two sub-graphs (G, G1 ), the
sampling distance d; was used as the unit of measure for both
smoothness constraints (Ag, A1), and the learnt renal cortex
thickness was defined as [Tiin = 2 em, T = 20 cm] (the
range is much bigger than the true value of every data).

Particularly, improper specifications of the geometric con-
straints may lead to an infeasible problem. Too small constraint
values will make the algorithm insensitive to sharp disconti-
nuities, while too large values will result in surface noise and
roughness, and loss of the a priori shape information [25], [26].
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The selection of smoothness constraints (Ag, A1) in this work
is intuitively based on empirical determination.

C. Evaluations Metrics

We calculate five different quality metrics to evaluate the
results of the proposed approach: Dice similarity coefficient
(DSC), volumetric overlap error (OE), signed relative volume
difference (SVD), average symmetric surface distance (Dayg)
and average symmetric root mean square (rms) surface distance
(Dyms)- The first metric DSC is a positive performance mea-
sure, in which higher value indicates more accurate segmenta-
tion, while the other four are negative performance measures, in
which lower value reflects more accurate segmentation.

For evaluating the volume overlap, we calculate DSC and OE
according to

2 X |VR ﬂVO|
DSC= ———M—— 14
Vel + Vo (19
|VRﬂVO|
OE=1- —— 15
|VRUVO| ( )

where Vi and V; are the manually segmented reference image
and the segmentation result by our approach respectively, while
the intersection operation N and union operation U are the voxel-
wise minimum and maximum operation respectively, and |V is
the number of voxels in region V.

To reveal if a result tends to over or under segmented, we
calculate SVD according to

Vol — |Va|

SVD =
|VE|

(16)
To account for the global and local disagreement between the
reference image and the segmentation result image, we calculate
Diyy and Dyp,s according to
Z D(p'm S()) + Z D(pov S]?)

_ pr€Sr Po€So

Dive = 17

& |Sr| + |So| a7
Z DQ(pT:SO)"_ Z Dz(p(HSR)

Dy = PrESR PoESo 18

| |Skr| + |So| (18)

where Sg and S represent the surfaces of Vi and Vo, and
D(p, S) refers to the minimum Euclidean distance between an
arbitrary point p and shape .S as in (3).

D. Performance Evaluations

To evaluate the performance of automatic renal cortex seg-
mentation, three different experiments were performed.

1) Evaluation of Initialization Using Implicit Shape Regis-
tration: The renal cortex segmentation method presented in this
paper is highly relied on the initialization. If initialization fails,
the method will mostly perform poorly. An implicit shape reg-
istration method is applied to initialize the kidney shape in the
test scans, instead of the manual localization in our previous
work [10], and results from the two methods are demonstrated
in Fig. 13. To analyze the results quantitatively, we convert both
initialized shapes into volumes with the same dimensions and
spacing as the original CT datasets, and compute the DSC using
the manually segmented kidney as reference. The DSC value for
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Fig. 13. Initialization result from the implicit shape registration method and
manual localization. The red semitransparent surface denotes the average shape
(the “Average Shape” in Fig. 2), and the green one denotes the initialized shape
using the implicit shape registration method (the “Initialized Shape” in Fig. 2),
while the blue wire frame denotes the manual localization result. (a) Transverse
view. (b) Coronal view. (c) Sagittal view.

TABLE II
METRICS RESULTS (Mean £+ SD)

Metrics DSC(%) OE(%) SVD(%) Dgyg(mm)  Dpgprs(mm)
Outer Surface 96.55+1.77 243+222 1424244  0.14£0.09 0.66+0.61
Inner Surface 92274224  6.55+5.03 -5914+5.44  0.43+0.30 1.11+0.73

Renal Cortex Mask ~ 87.62+1.79  4.83+4.64  3.09+£238  0.21£0.13 0.81+0.71
Final Renal Cortex ~ 90.50+1.19  4.38+3.93  237+1.72  0.18%0.11 0.80£0.64

the manual localization is 80.77% + 5.20% (MEAN =+ SD),
while the value for the implicit shape registration method is
R0.66% £ 6.76% (MEAN % SD). Although the result of the
automated method is slightly worse than that of manual local-
ization, it is sufficient for the following surface graph searching
phase.

2) Evaluation of Multiple Surfaces Graph Searching: Since
it is the key part of the whole segmentation method, we con-
ducted a more comprehensive evaluation. Manual segmenta-
tions of the whole kidney, the renal cortex and the inside re-
gion of renal cortex were used as references, and compared with
the extracted outer surface volume, the extracted inner surface
volume and the binary renal cortex mask (Section V), using
five metrics: DSC, OE, SVD, D,y,, and D,,. Note that al-
though the binary renal cortex mask is generated in Section V,
it mostly depends on the surfaces extraction result in Section IV
because Section V only refines the segmentation to a limited ex-
tent. These metrics are summarized in Table II. The DSC values
for the initialized shape (80.66% =+ 6.76%) and the extracted
outer surface (96.55% + 1.77%), which demonstrates the effec-
tiveness of multiple surfaces graph searching on detecting the
borders of the renal cortex, especially for the outer border.

Comparing the second, third and fourth row in Table II, we
find that the performance of outer surface segmentation is the
best, then the overall performance, and last is that of inner sur-
face segmentation. Such result implies that the inner surface
segmentation drag the overall performance to a certain extent,
and some inner surface segmentation bias can be intuitively dis-
covered from Fig. 14 (see red arrows). As stated in Section [-A,
the renal cortex and renal column are almost fused as one con-
nected component, which determines that the continuous inner
border of renal cortex rarely exists. This property, together with
its own low intensity contrast, makes the inner surface seg-
mentation more challenging than the segmentation of the outer
surface.
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Fig. 14. Renal cortex segmentation results before and after renal cortex re-
fining. Each column represents a single kidney data segmentation result corre-
sponding to the three initialized shapes in Fig. 6, the experimental results of
different filters in Fig. 10 and the three columns of the extracted surfaces in
Fig. 11. As in Fig. 10, from left to right, it presents a poor quality case (left), a
good quality case (middle), and a medium quality case (right). The top row rep-
resents the renal cortex segmentation result before renal cortex refining, namely
the binary renal cortex mask, and the bottom row represents the result after re-
fining, namely the final renal cortex volume. The green lines denote manual
segmentation of the renal cortex, and the blue lines in the top row denote the
binary renal cortex mask, while the red lines in the bottom row denote the final
renal cortex volume. The blue arrows indicate the renal pelvis, while the red
arrows indicate the inner surface segmentation bias. The red circles indicate the
false positive responses of renal cortex segmentation.

3) Evaluation of Renal Cortex Refining: Since its purpose is
to improve the renal cortex segmentation, we can compare the
final renal cortex volume with the previous binary renal cortex
mask to evaluate its performance. The results are presented in
Fig. 14 and summarized in the last row of Table II. Comparing
the last two rows in Table II, we find that the renal cortex re-
fining substantially improves the segmentation accuracy. Fur-
thermore, we find some false positive responses (red circles in
Fig. 14) which might be present in the final renal cortex volume.
The intensity distributions of the renal pelvis may be close to
that of the renal cortex in some CT images. If the two structures
are also adjacent in space, it becomes more difficult to distin-
guish them.

Comparing the three rows in Figs. 10 and 14, we find that the
image quality and spatial relationship among different kidney
structures such as the space adjacency of renal pelvis and renal
cortex in Fig. 14(a) and (d), affect the renal cortex segmentation
result. An experiment was performed to analyze the stability
and robustness of the proposed approach. We compare the ex-
tracted outer and inner surface volumes, the binary renal cortex
mask and the final renal cortex volume of the three sample data
sets with their corresponding manual segmentation results using
the five metrics as above. The results are presented in Fig. 14
and summarized in Table III, in which “Poor Case,” “Good
Case,” and “Medium Case” represent the three kidney images
in Fig. 14, respectively.

E. Computation Time

The whole method presented in this paper takes on average
25 min per dataset. Table IV shows the average computational
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TABLE III
SAMPLE RESULTS (POOR CASE/GOOD CASE/MEDIUM CASE)

Metrics DSC(%) OE(%) SVD(%) D gyg(mm) Dgrars(mm)
Outer Surface 94.62/98.34/96.55  4.64/0.20/2.13 4.00/-0.82/1.55 0.19/0.09/0.15  1.39/0.30/0.81
Inner Surface 90.81/94.71/92.33  11.36/1.31/6.53  -10.74/-1.39/-5.18  0.82/0.23/0.43  1.64/0.69/1.30

Renal Cortex Mask
Final Renal Cortex

85.18/89.88/87.59
89.25/92.44/91.42

9.16/0.73/4.64
8.95/0.62/3.51

5.44/1.19/3.23
4.62/0.90/2.42

0.40/0.18/0.22
0.34/0.13/0.21

1.33/0.24/0.70
1.09/0.11/0.64

TABLE IV
COMPUTATION TIME

Steps Time

Nonlinear Diffusion Filtering 20mins
Initialization Using Implicit Shape Registration 10secs
Multiple Surfaces Graph Searching Smins
Renal Cortex Refining 6secs

Total ~25mins

time needed for each step of the algorithm. The training time for
shape model training is not included, and our implementations
were not optimized for speed, and the values we give here are
simply indications of the running time. It can be seen that the
nonlinear diffusion filtering is the most computationally expen-
sive part of the algorithm, taking 80% of the whole computa-
tion time. Although nonlinear diffusion filtering smoothes the
image and reduces noise, which is important to the following
operations and determines the final results to a certain extent,
we will still be able to find some other image enhancing tech-
nique which could shorten the processing time while preserving
the effect. The computation time of other steps in our method
is very competitive. Take the initialization using implicit shape
registration for example, as reviewed in [19], other approaches
such as the GHT [20], [21], EA [22], [23] and particle filtering
[24] usually take several minutes or even half an hour to locate
the shape model.

VII. CONCLUSION AND FUTURE WORK

In this paper, we have proposed a novel approach for auto-
matic renal cortex segmentation which effectively integrates the
implicit shape registration based initialization and the extended
multiple surfaces graph search method with incorporation of
physical constraints. This approach could tackle the problems
brought by the special characteristics of the kidney’s anatom-
ical structure as discussed in Section I-A. We evaluated the
method on 17 clinical CT scans with the leave-one-out strategy.
The experimental results showed that our method is effective
and accurate in the presence of weak boundaries and structural
ambiguities.

We propose an implicit shape registration method for the
kidney shape initialization. This new technique makes the
whole renal cortex segmentation approach fully automatic
compared against the manual localization used in our previous
work [10]. The initialization results in Figs. 6 and 13 reveal
the good performance compared against manual localization.
Meanwhile, the computation time of this method is very com-
petitive, which determines that it could be easily extended to
other applications.

In order to better restrain the intensity proximity of the renal
cortex and renal column (detailed in Section I-A), we extend the

multiple surfaces graph search approach to allow for varying
sampling distances and physical separation constraints, instead
of the traditional fixed sampling distance and numerical separa-
tion constraints as in [10], [25]-[27]. The renal cortex outer and
inner surfaces extraction results in Fig. 11 and Table II demon-
strate the effectiveness of our extended multiple surfaces graph
search method. The incorporation of physical constraints can
also be introduced to other applications if the corresponding a
priori information is available.

In order to detect and reduce incorrect segmentation pixels
introduced by the nonfully closed structure around renal pelvis,
we design a renal cortex refining procedure which consists of
a series of image processing operations. The final renal cortex
segmentation results in Figs. 12 and 14 and Table II reveal the
substantial accuracy improvement brought about by the renal
cortex refining.

In summary, our major contributions are three-fold.

1) We present an implicit shape registration based shape
model initialization method which makes the renal
cortex segmentation fully automatic substantially.

2) We propose a novel extension to the multiple surfaces
graph search approach to allow for varying sampling
distances and physical separation constraints, which can
better restrain the intensity proximity of the renal cortex
and renal column.

3) We design a renal cortex refining procedure which could
detect and reduce incorrect segmentation pixels around
the renal pelvis.

Although encouraging results have been achieved, there still
exists some systematic bias (see red arrows in Fig. 14) or even
segmentation error (see red circles in Fig. 14). It is important to
realize the difficulty of the renal cortex segmentation task taking
into account the special characteristics of the kidney’s anatom-
ical structure. Therefore in our future work, we will focus on:
1) study the attributes of the renal cortex and propose better
graph construction and cost functions to ease the segmentation
bias, especially the adaptive selection of smoothness constraints
(Ag, A1); 2) design a more accurate and effective renal cortex
refining procedure to detect and reduce incorrect segmentation
pixels around the renal pelvis; 3) find or design other image
enhancing technique which could shorten the processing time
while preserving the result; and 4) use more objective validation
with both left and right kidney datasets and reference standard
acquired from multiple experts.

REFERENCES

[1] M. D. Beland, N. L. Walle, J. T. Machan, and J. J. Cronan, “Renal
cortical thickness measured at ultrasound: Is it better than renal length
as an indicator of renal function in chronic kidney disease?,” Am. J.
Roentgenol., vol. 195, no. 2, pp. 146-149, 2010.



1860

[2] N. S. Muto, T. Kamishima, A. A. Harris, F. Kato, Y. Onodera, S.
Terae, and H. Shirato, “Renal cortical volume measured using auto-
matic contouring software for computed tomography and its relation-
ship with BMI, age and renal function,” Eur. J. Radiol., vol. 78, no. 1,
pp. 151-156, 2011.

F. Artunc, S. Yildiz, C. Rossi, A. Boss, H. Dittmann, H. P. Schlemmer,

T. Risler, and N. Heyne, “Simultaneous evaluation of renal mor-

phology and function in live kidney donors using dynamic magnetic

resonance imaging,” Nephrol. Dial. Transplant., vol. 25, no. 6, pp.

1986-1991, 2010.

[4] L. A. Stevens, J. Coresh, T. Greene, and A. S. Levey, “Assessing
kidney function—Measured and estimated glomerular filtration rate,”
N. Engl. J. Med., vol. 354, no. 23, pp. 2473-2483, 2006.

[5] J. Xie, Y. F. Jiang, and H. T. Tsui, “Segmentation of kidney from ul-
trasound images based on texture and shape priors,” IEEE Trans. Med.
Imag., vol. 24, no. 1, pp. 45-57, Jan. 2005.

[6] D.Lin, C. Lei, and S. Hung, “Computer-aided kidney segmentation on
abdominal CT images,” IEEE Trans. Inf. Technol. Biomed., vol. 10, no.
1, pp. 59-65, Jan. 2006.

[7] M. Spiegel, D. Hahn, V. Daum, J. Wasza, and J. Hornegger, “Segmen-
tation of kidneys using a new active shape model generation technique
based on non-rigid image registration,” Comput. Med. Imag. Graph.,
vol. 33, no. 1, pp. 29-39, 2009.

[8] M. Freiman, A. Kronman, S. J. Esses, L. Joskowicz, and J. Sosna,

“Non-parametric iterative model constraint graph min-cut for auto-

matic kidney segmentation,” in Proc. 13th Int. Conf. Med. Image Com-

puting Computer Assist. Intervent. (MICCAI), 2010, pp. 73—80.

0. Gloger, K. D. Tonnies, V. Liebscher, B. Kugelmann, R. Laqua,

and H. Volzke, “Prior shape level set segmentation on multistep

generated probability maps of MR datasets for fully automatic kidney
parenchyma volumetry,” IEEE Trans. Med. Imag., vol. 31, no. 2, pp.

312-325, Feb. 2012.

[10] X. Li, X. Chen, J. Yao, X. Zhang, and J. Tian, “Renal cortex segmen-
tation using optimal surface search with novel graph construction,” in
Proc. 14th Int. Conf. Med. Image Computing Computer Assist. Inter-
vent. (MICCAI), 2011, pp. 387-394.

[11] B. Tsagaan, A. Shimizu, H. Kobatake, and K. Miyakawa, “An auto-
mated segmentation method of kidney using statistical information,”
in Proc. 5th Int. Conf. Med. Image Computing Computer Assist. Inter-
vent. (MICCAI), 2002, pp. 556-563.

[12] W. Touhami, D. Boukerroui, and J. Cocquerez, “Fully automatic
kidneys detection in 2D CT images: A statistical approach,” in Proc.
8th Int. Conf. Med. Image Computing Computer Assist. Intervent.
(MICCAI), 2005, pp. 262-269.

[13] H. K. Koh, S. Weijia, B. Shuter, and A. A. Kassim, “Segmentation of
kidney cortex in MRI studies using a constrained morphological 3-D
h-maxima transform,” in Proc. 9th Int. Conf. Control, Automat., Robot.
Vis. (ICARCYV), 2006, pp. 1-5.

[14] S.Yuksel, A. ElI-Baz, and A. Farag, “A kidney segmentation framework
for dynamic contrast enhanced magnetic resonance imaging,” J. Vib.
Control, vol. 13, no. 9-10, pp. 1505-1516, 2007.

[15] W. Cai, N. Holalkere, G. Harris, D. Sahani, and H. Yoshida, “Dy-
namic-threshold level set method for volumetry of porcine kidney in
CT images: In vivo and ex vivo assessment of the accuracy of volume
measurement,” Acad. Radiol., vol. 14, no. 7, pp. 890-896, 2007.

[16] H. Abdelmunim, A. Farag, W. Miller, and M. AboelGhar, “A kidney
segmentation approach from DCR-MRI using level sets,” in Proc. 21th
IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit. (CVPR),
2008, pp. 566-571.

[17] E.G. Zoellner, R. Sancee, P. Rogelj, M. J. Ledesma-Carbayo, J. Rovik,
A. Santos, and A. Lundervold, “Assessment of 3-D DCE-MRI of the
kidneys using non-rigid image registration and segmentation of voxel
time courses,” Comput. Med. Imag. Graph.,vol.33,no. 3, pp. 171-181,
2009.

[18] D. Stalling, M. Westerhoff, and H. Hege, Amira: A Highly Interactive
System for Visual Data Analysis. New York: Elsevier, 2005.

[19] T.Heimann and H. Meinzer, “Statistical shape models for 3-D medical
image segmentation: A review,” Med. Image Anal., vol. 13, no. 4, pp.
543-563, 2009.

[20] X. Zhang, J. Tian, K. Deng, Y. Wu, and X. Li, “Automatic liver seg-
mentation using a statistical shape model with optimal surface detec-
tion,” IEEE Trans. Biomed. Eng., vol. 57, no. 10, pp. 2622-2626, Oct.
2010.

[3

—

[

—

IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. 31, NO. 10, OCTOBER 2012

[21] O.Ecabert, J. Peters, H. Schramm, C. Lorenz, J. von Berg, M. J. Walker,
M. Vembar, M. E. Olszewski, K. Subramanyan, G. Lavi, and J. Weese,
“Automatic model-based segmentation of the heart in CT images,”
IEEE Trans. Med. Imag., vol. 57, no. 10, pp. 2622-2626, Oct. 2010.

[22] A. Pitiot, A. W. Toga, and P. M. Thompson, “Adaptive elastic segmen-
tation of brain MRI via shape-model-guided evolutionary program-
ming,” IEEE Trans. Med. Imag., vol. 21, no. 8, pp. 910-923, Aug.
2002.

[23] T.Heimann, S. Munzing, H. Meinzer, and I. Wolf, “A shape-guided de-
formable model with evolutionary algorithm initialization for 3-D soft
tissue segmentation,” in Proc. 20th Inf. Process. Med. Imag. (IPMI),
2007, pp. 1-12.

[24] M. D. Bruijne and M. Nielsen, “Multi-object segmentation using shape
particles,” in Proc. 19th Inf. Process. Med. Imag. (IPMI), 2005, pp.
59-127.

[25] K. Li, X. D. Wu, D. Z. Chen, and M. Sonka, “Optimal surface seg-
mentation in volumetric images—A graph-theoretic approach,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 28, no. 1, pp. 119-134, Jan.
2006.

[26] Y. Yin, X. M. Zhang, R. Williams, X. D. Wu, D. D. Anderson, and M.
Sonka, “Logismos-layered optimal graph image segmentation of mul-
tiple objects and surfaces: Cartilage segmentation in the knee joint,”
IEEE Trans. Med. Imag., vol. 29, no. 12, pp. 2023-2037, Dec. 2010.

[27] M. Garvin, M. Abramoff, X. D. Wu, S. R. Russell, T. L. Burns, and
M. Sonka, “Automated 3-D intraretinal layer segmentation of macular
spectral-domain optical coherence tomography images,” IEEE Trans.
Med. Imag., vol. 28, no. 9, pp. 1436-1447, Sep. 2009.

[28] Y. Boykov and V. Kolmogorov, “An experimental comparison of
min-cut/max-flow algorithms for energy minimization in vision,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 9, pp. 1124-1137,
Sep. 2004.

[29] X. Huang, N. Paragios, and D. N. Metaxas, “Shape registration in im-
plicit spaces using information theory and free form deformations,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 28, no. 8, pp. 1303-1318,
Aug. 2006.

[30] X. Li, X. Chen, J. Yao, X. Zhang, and J. Tian, “Incorporation of phys-
ical constraint in optimal surface search for renal cortex segmentation,”
in Proc. SPIE Med. Imag., 2012.

[31] J. Weickert, B. Romeny, and M. Viergever, “Efficient and reli-
able schemes for nonlinear diffusion filtering,” IEEE Trans. Image
Process., vol. 7, no. 3, pp. 398410, Mar. 1998.

[32] W. E. Lorensen and H. E. Cline, “Marching cubes: A high resolu-
tion 3-D surface construction algorithm,” in Proc. ACM SIGGRAPH
Comput. Graph., 1987, pp. 163-169.

[33] T. Heimann, I. Oguz, I. Wolf, M. Styner, and H.-P. Meinzer, “Imple-
menting the automatic generation of 3-D statistical shape models with
ITK,” in Proc. MICCAI Open Science Workshop, 2006, pp. 1-22.

[34] A.V.NasonovandA. S. Krylov, “Fast super-resolution using weighted
median filtering,” in Proc. 20th Int. Conf. Pattern Recognit. (ICPR),
2010, pp. 2230-2233.

[35] S. Osher and J. A. Sethian, “Fronts propagating with curvature-de-
pendent speed: Algorithms based on Hamilton-Jacobi formulations,”
J. Comput. Phys., vol. 79, no. 1, pp. 12-49, 1988.

[36] N. Paragios, M. Rousson, and V. Ramesh, “Matching distance func-
tions: A shape-to-area variational approach for global-to-local registra-
tion,” in Proc. 7th Eur. Conf. Comput. Vis. (ECCV), 2002, pp. 813-815.

[37] J. Tian, J. Xue, Y. Dai, J. Chen, and J. Zheng, “A novel software plat-
form for medical image processing and analyzing,” IEEE Trans. Inf.
Technol. Biomed., vol. 12, no. 6, pp. 800—812, Nov. 2008.

[38] D. Scharstein, “Matching images by comparing their gradient fields,”
in Proc. 12th Int. Conf. Pattern Recognit. (ICPR), 1994, pp. 572-575.

[39] Y. Sato, C. Westin, A. Bhalerao, S. Nakajima, N. Shiraga, S. Tamura,
and R. Kikinis, “Tissue classification based on 3-D local intensity struc-
tures for volume rendering,” IEEE Trans. Vis. Comput. Graph., vol. 6,
no. 2, pp. 160-180, 2002.

[40] Y. Sato, S. Nakajima, N. Shiraga, H. Atsumi, S. Yoshida, T. Koller,
G. Gerig, and R. Kikinis, “Three-dimensional multi-scale line filter for
segmentation and visualization of curvilinear structures in medical im-
ages,” Med. Image Anal., vol. 2, no. 2, pp. 143—168, 1998.



