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Longitudinal/Serial Image Data

Pediatrics: Brain Growth Aging / Neurodegeneration
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* |mage analysis technology for 4-D data is lagging behind acquisition
e Often: individual time-point analysis, ignores causality of repeated imaging



Atrophy

Spatiotemporal Morphometry

Cross-sectional paradigm

Inter-subject variability >> Intra-subject changes

Courtesy of Lorenzi & Pennec, INRIA




Spatiotemporal Modeling:
Natural Task in Clinical Reasoning

e Motivation:

— Development, degeneration, effects of therapeutic
intervention are dynamic processes.

— Personalized health care: Individual trajectories compared to
expected “norm”.

— Clinical terminology: Atypical, Monitoring

Departure from typical development, deviation from healthy

Typical but delayed growth patterns, catch-up, atypical development
Analysis of recovery for each patient

Predict onset of clinical symptoms, or pathological progression
Monitor efficacy of treatment

* — Focus on longitudinal design & longitudinal analysis



Atrophy

Spatiotemporal Morphometry

Longitudinal paradigm

Subject-specific Trajectories -> Group Testing on Trajectories

courtesy of Lorenzi & Pennec, INRIA



Regression

Fit a continuous model given discrete measurements
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Regression: Modeling Head Size

Head Growth: X Y.Z Dimensions
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on MRI
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Example: Understanding the Aging Brain
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« 88 brain images, ages 20-80 yrs old

o Can we see a trend in how the brain changes
as people get older?



Statistics on Images?

Given a col
of the “Av

5 the Image
ariability”?

Linear Average does not
look like real image



Building of Population Averages: “Atlases”

Motivation:

e Map population into
common coordinate
space

e | earn about normal
variability

e Describe difference
from normal

e Use as normative atlas
for segmentation

Figure 1. Template Construction Framework
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Joshi et al., Neuroimage 2004, Avants et al., Neuroimage 2004



Unbiased Atlas Building

Joshi/Davis /Jomier/Gerig



Population Varlablllty over Age

Measurement
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Normal Aging (50
subjects, 20 to 70 years)

Courtesy S. Joshi



Regression Model

Gray Matter Volume / Total Brain Volume
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Kernel Width=6; Sample Size=50
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Scalar Observations:
Volumes with associated age
* Predictor: Age
 Response: Volume
Images as Observations:

 Kernel regression with image
“averaging” via group-wise registr.



3D Image Regression — 4D Atlas

Davis, Fletcher, Joshi (ICCV’07 Marr Prize, 1JCV 10)
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Quantification of Object Dynamics by
Spatiotemporal Shape Analysis

James Fishbaugh
Guido Gerig

Marcel Prastawa
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Longitudinal Modeling of Appearance and Shape and is Potential for
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Example Infant Study:
Cross-sectional vs. Longitudinal

A: age 2 A:age 4 B: age 2 B:age 4

Cross-sectional: Huge changes between sets of shapes



Shape and Registration
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derthal, pustralopithecme, chimpanzee. To the right of each akull & o coordinate

grid determined with Thompson's method of coordinetes, wnidh the modern hmaon
skull wa the bose image, Reproduced from Fyure 5.55 of (131] by kind permdssion

of Hong Kong Undversity Prosa, .
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Homology:

Corresponding
(homologous)
features in all
skull images.

, The Statistical Theory of Shape



Geometric Correspondence: Shapes

PDM Model

(Cootes/Taylor):

« Point to point
correspondence for
shape modeling

« PCA analysis

* Major eigenmodes
of shape variability

e 5.3, ] -
respondence ment ar alignm a0
sed to buil q paced b manual H

nd model.




Modeling a Shape Ensemble:
Strategy for Landmark Placement

Compact/simple

Shape space
o shape space

Geometrically
accurate on
surfaces

R. Whitaker, J. Cates, Uah




Entropy-based Particle Systems

e Surfaces are discrete point sets, no parameterization

 Dynamic particles, positions optimize the information of the
system: ensemble entropy, surface entropy

Low ensemble entropy

High ensemble entropy

Low surface entropy

High surface entropy

low is better

high is better

Q=H(Z)-) H(P")

Oguz, Styner, Whitaker, Datar, Cates, 2009
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Changes in head size with
age

Changes in head shape
with age

Datar, Cates, Fletcher, Gouttard, Gerig, Whitaker, Particle-based Shape
Regression, MICCAI 2009



Challenge: Registration without
Point-to-Point Correspondences

Example:
Co-registration of
whole-brain fiber
tracts?

Durrleman, Pennec, Ayache et al.



“Correspondence-free” Registration: Currents

Topology and shape differences and noise

can make point-to-point correspondence
hard:

* Currents: Objects that integrate vector
fields

e Shape: Oriented points = Set of normals
(tangents)

* Space of Currents: Vector Space
 Distance between curves:

d(L1,L2)2:/ w1{x)‘r1(x)dx+/ wa (X))o (x)dx

L Ly

_ / o (X) (X ) — j w1 (X)tra(xX)dx
L Ly
[Glaunes2004] Glaunes, J., Trouve, A., Younes, L. Diffeomorphic matching of distributions: a new approach, ... CVPR 2004.

[Durrleman2008] S. Durrleman, X. Pennec, A. Trouvé, P. Thompson, N. Ayache, Inferring Brain Variability from Diffeomorphic
Deformations of Currents: an integrative approach, Medical Image Analysis 2008



ACCELERATION-CONTROLLED
SHAPE REGRESSION



4D Shape Modeling from Time-
Discrete Data

From discrete shapes to a continuous evolution

* Concept: Given a set of time-discrete shapes, non-uniformly spaced,
interpolate a continuous 4D growth model via shape regression.

* Assumption: Growth/degeneration of biological tissue is inherently smooth in
space and time & nonlinear, locally varying process.

* Method: Continuous flow of diffeomorphisms via correspondence-free
“currents”. Cost function = Data Matching + Regularity.

Durrleman, Pennec, Ayache, Trouve, Gerig, MICCAI ‘09
Fishbaugh, Durrleman, Gerig, MICCAI '11, SPIE’12, MICCAI'12, IPMI'13



Key Observation

Piecewise geodesic regression [Durrleman et. al,. MICCAI 09]
Shape evolution modeled as the continuous flow of diffeomorphisms
Geodesics interpolate between observations
Extension of piecewise linear regression to space of diffeomorphisms

Cannot prevent a loss of regularity at target data

Due to discontinuities in We might desire the velocity field to
the velocity field be differentiable everywhere
e
oo ®
—=> {} e )
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Piecewise Geodesic vs Acceleration Controlled

Synthetic experiment comparing piecewise geodesic and
acceleration controlled shape regression

Time: 0.00 years Time: 0.00 years
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Magnitude of momenta Magnitude of momenta
1] 0.00571 0.0114 0.0171 0.0229 0.0286 0.0343 0.04 o 0.00571 0.0114 0.0171 0.0229 0.0286 0.0343

Piecewise geodesic Acceleration controlled
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Acceleration Controlled Shape Regression

We define the acceleration field a(x(t)) as a
vector field of the form

N
a(x(t)) = ) KY(x(t),xi(t))ei(t)
i=1

Xj: the shape points carrying a point force vector a.

KY(x,y) = exp(— ||x — y| /A%): a Gaussian

kernel with standard deviation }‘v

Time varying deformation ¢.(x;) given by:
be(xi) = a(xi(t))
x;(0): initial position

x;(0): initial velocity
Fishbaugh, MICCAI 2011,12, 13, SPIE 2012



Regression Criterion

Let x(t), a(t), and a(t) be the concatenation of the x;(t)'s,
ai(t)’s, and the «a;(t)'s.

Ek(0),a(t)) = 3 165(x(0) — x(t)[3y- + [ lla(e)If} d

t; 0

|-l y« is the norm on currents

la(t)lly = a(t)KY (x(t), x(t))ex(t)



Acceleration Controlled Shape Regression

Evolution of cerebellum from 6 to 24 months

Point forces a Acceleration Velocity



Interpolation Properties

C) = = = Pjecewise geodesic ‘

— Acceleration controlled

-
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Fig.1. a) and b) Shape evolution from baseline (solid) to final configuration (trans-
parent) using a model based on piecewise geodesics (a) and our method (b) with point
trajectories for selected particles displayed as black lines. ¢) The path of a point on the
forebrain is decomposed into coordinates. Growth is estimated using 15 target shapes,
highlighting the speed discontinuities present in the piecewise geodesic evolution.

Fishbaugh et al., MICCAI 2011



Longitudinal Shape Regression

& months 1 year 2years

Durrleman, Fishbaugh, Gerig,
MICCAI 2011, MICCAI 2012



4D Shape Regression

o
»

6 12 24 Time (months)

From discrete 3D shapes (6m,12m,24m) to continuous 4D shape model

Fishbaugh, Durrleman, Gerig, MICCAI 2011, 2012




GEODESIC SHAPE/IMAGE
REGRESSION



On Growth and Form

ON GROWTH
AND FORM

The Complete Revised Edition

xvi] THE COMPARISON OF RELATED FORMS 1063

gtart this series with the figura of Polygrion, in Fig. 521, we see that
the outlines of Peewdopriscanthus (Fig, 522) and of Sebastes or
Scorpacna (Fig. b23) are easily derived by substituting a system

Fig. 521. Polypriom. Fig. 322,  Paeudopriacanibus aliws,

of triangular, or radial, coordinates for the rectangular ones in which
we had inseribed Polyprion. The very eurions fish Antigenia capros,
an ooeanio relative of our own boar-fish, conforms closely to the
peculiar deformation represented in Fig. 524.

D'Arcy Wentworth Thompson

http://archive.org/download/ongrowthform00thom/ongrowthform00thom.pdf
http://ia700301.us.archive.org/10/items/ongrowthform00thom/ongrowthform00thom.pdf

D’Arcy Wentworth Thompson, On Growth and Form (1917, mathematics and biology)



Ambient Space Deformation
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Change in geometric
entities in images
represented as
transformations of

the underlying

coordinate grid.

Image: Nikhil Singh, PhD thesis Utah 2013



Geodesic Shape Regression




Pediatric Brain Development

\ Multimodal shape regression:

« Combination of points, curves, meshes

* Here: fiber tracts from DTI and subcortical

structures from T1w/T2w MRI

6 Mo ; 12 mo ; 24 mo



Pediatric Brain Development

Regression with only fibers




Geodesic Image Regression




Summary of Method

1) Shoot control points 2) Trajectory defines flow

N

3) Flow pixel locations 4) Interpolate in baseline image




Brain Atrophy in Alzheimer's Disease (3D)

T1W images of same patient over time (~2,000,000 voxels)

70.75 years 71.38 years 71.78 years 72.79 years

Six years predicted brain atrophy




Geodesic Regression of Images + Shapes




Pediatric Brain Development

—

12 months 25 months

Longitudinal sequence of observed T1W images and
white matter surfaces used for model estimation.



Pediatric Brain Development

Estimation with images only  Estimation jointly but only
showing image



Pediatric Brain Development

1) Estimation with images only

2) Estimation jointly but only showing image

3) Estimation jointly and showing both image and white matter
4) Estimation with white matter surfaces only



Longitudinal Shape Modeling

Example mandibular surgery case (Prof. L. Cevidanes),
16-22 years post-surgery.

Follow-up scans in 2 years intervals.

Qualitative analysis from overlay: Do we understand
remodeling after surgery?



Longitudinal Shape Modeling

Example mandibular surgery case (Prof. L. Cevidanes),
16-22 years post-surgery.

Color: speed:

W velocity

Qualitative analysis from overlay: Spatio-temporal shape
Do we understand remodeling? regression: Local and global.



Preliminary: 4D Heart Modeling

e 10 volumes
N (5122*76)

4D Cainc T across single
heart cycle

http://www.osirix-viewer.com/resources/dicom-imaqge-library/

Segmentation

CTA cardiac segmentation

H.A. Kirisli, M. Schaap, S. Klein, S.L. Papadopoulou, M. Bonardi, C.H. Chen, A.C. Weustink, N.R. Mollet, E.J.
Vonken, R.J. van der Geest, T. van Walsum, and W.J. Niessen, Medical Physics, vol. 37(12), pages 6279-6292,
December 2010



Preliminary: 4D Heart Modeling

Original segmented data, Regression: Blue/red:
loop through 10 datasets contraction/expansion



Preliminary: 4D Heart Modeling

Time (observations)

Regression: Blue/red: Volumes: Original versus
contraction/expansion 4D regression model



Dental Surgery (L. Cevidanes et al.)

15 years ' 17 years ' 40 years ' 51 years

 Model of aging changes in the dental arches.
* 6 time points of upper dental arches of single
subject at ages 11, 13, 15, 17, 42 and 52.



Dental Surgery (L. Cevidanes et al.)

4D spatio-temporal shape regression can be
used to generate a model of aging changes in
the dental arches

« Sample case: normal dental arch
* Future goal: extend analysis to patients with
cleft alveolus and palate.
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Driving Motivation: Autism

Complex neurodevelopmental Prevention?
disorder.

Many subjects require long-term
care and costly therapy.

Reports of autism cases per 1,000 Lr;terbvi?tlotlsta s,
children grew dramatically in € betterthe
the U.S. from 1996 to 2007. outcome

Treatment?
The earlier

o)
,.__Prevalence: 05% Research: Studies of early
# per 1000 brain development:

 Theory of cause and of
brain alterations

 Timing and onset

 Hope: Better, earlier
therapy

1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

Recent statistics: 1 in 68 (1.5%)




Autism Spectrum Disorder (ASD)

SIMONS FOUNDATION ===

Brain expands too fast, shrinks too soon in autism

Brain drain: Overall brain volume decreases and the
cortex thins at a faster-than-normal rate in young adults
with autism.

Tuesday, hay 3, 2011
THE WALL STREET JOURNAL. | BUSINESS
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Link In Autism, Bram Size

Article | Commerts [2]

©| Email | Print sawe This B ] & +hore + Tew

By JEWHIFER CORBETT DOOREN

Children with autizm hawe larger brainz than children without the disorder, and the growth
appears to oceur before age 2, according to 3 new study released Monday.

Arch Gen Psychiatry. 2011;68(5):467-476
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===Combined Controls

N= 189 community controls
N= 113, ADI, ADOS

==Autism

4

Brain
Enlargement
on MRI

Longitudinal Head Circumference (Cody
Hazlett et al., ArchGen Psyc Dec. 2005)

0 3 6 9 12 15 18 21 24 27 30 33 36
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Early Finding:

Brain enlargement in autism seems
to start at year 1 or earlier

Why? What? Effect?

Better understanding — Early
intervention to improve outcome

What measurements to use?



Magnetic Resonance Imaging (MRI)

Non-invasive, quick, 3D
comfortable scanning (10Min)

il
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Study of Growth: Longitudinal Infant Scans (6 to 24 months)



Subject-specific longitudinal MRI




ing early Development ...

Understand




ACE-IBIS: Autism Centers
of Excellence

* P.l. Joseph Piven, UNC
e Longitudinal study of infant siblings at risk for Autism
scanned at 6mo, 1y and 2yr (total >1200 MRI/DTI) Montreal

* 4 scanning sites:

— Seattle (2 scanners)

— St. Louis

— Philadelphia

p=

— Chapel Hill (2 scanners)
DCC: MNI Montreal

* Image analysis: UNC & NYU/Utah



Goal: Growth Trajectories

Head Circumference
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Quantitative analysis of
subject-specific trajectories

10 longitudinal cases - White Matter

Volumes
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Mixed

effects

_ modeling:

* Fixed
effects

« Random

/_,

effects

Variation btw individuals versus

subtle changes over time



Early Brain Development: 4D Shape
Trajectories

6.00 months 6.00 months

Geodesic Image Regression: Fishbaugh, Durrleman et al., 2015/ 2017



Why is continuous regression important?
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LETTER

doi:10.1038/nature21369

nature

Early brain development in infants at high risk for
autism spectrum disorder

Heather Cody Hazlett"?, Hongbin Gu!, Brent C. Munsell?, Sun Hyung Kim!, Martin Styner!, Jason J. Wolff*, Jed T. Elison?,
Meghan R. Swanson?, Hongtu Zhu®, Kelly N. Botteron’, D. Louis Collins!!, John N. Constantino’, Stephen R. Dager®?,

Annette M. Estes®!?, Alan C. Evans", Vladimir S. Fonov!, Guido Gerig'?, Penelope Kostopoulos', Robert C. McKinstry'3,
Juhi Pandc_\-'”, Sarah Paterson', John R. Pruett 7, Robert T. Schultz!, Dennis W. Shaw®?, Lonnie Z\\-'aig011l)auml°,

Joseph Piven!? & the IBIS Network*

Autism detectable in brain long before
symptoms appear

EE 'n Sign in News Sport  Weather Shop = Earth = Travel

NEWS

THINKSTOCK

Brain scans can detect autism long before any symptoms start to emerge,
say scientists.



LETTER

Autism detectable in brain long before
symptoms appear
EE ) signin

doi:10.1038/nature21369

Hews | Spordt Weather | Shop  Fah | Travel

Early brain development in infants at high risk for

autism spectrum disorder

* 106 high risk, 42 low risk infants, MRI at
6/12/24 months.

« Hyperexpansion of cortical surface area
between 6 and 12 months precedes
brain volume overgrowth btw 12 and 24.

* Deep-learning algorithm that uses
surface area from MRI of the brain of
6—12-month-olds predicted the
diagnosis of autism in individual high-
risk children at 24 months (81% positive
predictive value, 88% sensitivity).
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Braln scans can detect autism long before any symptoms start to emerge,
say scientists.
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Top 40 features contribution
6 Month 12 Month

| . -
High High
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Extended Data Figure 1 | Visualization of cortical regions with surface area measurements among the top 40 features contributing to the linear sparse
learning classification. The cortical features produced by the deep learning approach (Fig. 3) are highly consistent with those observed using an alternative
approach (linear sparse learning) shown here. Results from this alternative approach are included for comparison in Supplementary Tables 2 and 3.



Role of Deep Learning

 Data: MRIs, parcellated into 78
regions, (AAL) with brain volume,
surface area, cortical thickness at 6
and 12 months of age, and sex of
the infants.

* Conventional statistical analysis:
PCA or Sparse Learning+SVM: No
group differences

* Deep learning: Infers complex
nonlinear relationships, 2-stage
design, significantly outperformed
other classification schemes
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Motivation: Maturation seems encoded in multi-
modal MRI contrast

Infant MR

Tiw

T2w

Vardha et al., MICCAI 2017



Motivation: Maturation seems encoded in multi-
modal MRI contrast

IBIS case 321541 IBIS case xxxxxxxx

("/——\-\‘._




Tissue Histograms in T1w & T2w by Age

4D Segmentation
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GM (blue), WM (red), CSF (black) intensity histograms

Avantika Vardhan et al., MICCAI'17, MICCAI ‘14, SPIE ‘14, ISBI 13



Model: WM/GM Contrast

Measure of difference: “Overlap” of

wm and gm distributions via HAD(PL, P2) = -\/2 (1—[,\/’310/)’32(}/)@)-
Hellinger Distance metric:

Contrast versus Overlap
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New Discovery: Pattern of Maturation

95

R - 185
Female

Female

early

—'s
Months

« Posterior — anterior pattern of timing of maturation
* Logistic modeling: Time at inflection point

24 Females, 46 Males, 3 timepoints 6/12/24 months
Vardha et al., MICCAI 2017



Sex Differences of Maturation

10.5

10

p<0.05

8.5
p<0.01

early

Significance map  p-value Female Male Months

Posterior — Anterior pattern of maturation

 Females earlier than males (9 to 23 days)
Vardha et al., MICCAI 2017
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PREDICT-HD

Huntington’s Disease: Search for
noninvasive imaging biomarkers

* Symptomatic HD imaging findings
— Atrophied caudate and putamen
— Disproportionate loss of white matter

* Prodromal HD imaging findings

— Striatal atrophy correlates with:
* Neurological impairment B Striatal volume
* Poorer cognitive performance
* Years to motor symptom onset

* How can we help HD patients!?

— Present: Symptomatic treatment (no cure)

Vaolume (mil)
o

14 -

— Future: Treatment for pre-symptomatic

12 -
HD patients 3 -30 -25 -20 -15 -10 -5 0

Estimated years from diagnosis

Courtesy Jane Paulsen, Hans Johnson, U-lowa



TRACK-HD Stage 1 HD Subject

Baseline Scan




TRACK-HD Stage 1 HD Subject

R —

Year 1 Scan




TRACK-HD Stage 1 HD Subject

BS| Overlay

Tissue loss

Tissue gain »
g b

Atrophy Rate: 1.9% Premanifest Rate: 0.7% Control Rate: 0.2%




Huntington’s Disease: Joint 4D
Modeling of Shapes and Images

N
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I Baseline 1 ‘y'ear 2 yearE 3 years 4 years I
I Interpolation Extrapolation !

Single subject diagnosed with HD scanned at 38, 59, and
60 vears of age.

® TIW images.

® [eft/right caudate segmented and manually cleaned.

® Geodesic model can be used to extrapolate into the

future.



Subject-specific 4D shape & image
regression

Control 2yrs Interval Huntington’s D. 2yrs Interval

0.0 years

. — —

Fishbaugh et al., IPMI 2013



Work in Progress: Patient-specific 4D

shape & image regression
Control Extrapolated HD Extrapolated

0.0 years

e —

interpolation extrapolation time
Fishbaugh et al., ISBI ‘13, IPMI ‘13



Huntington’s Disease: Subject-specific
models

Left Caudate Volume

il

0.0025 | e

\
0.0020 | b ¥

e
< \,
0.0015 | '\_ '\‘\.
0.0010 L L
20 30 40 50 60 70 80

Caudate volume observations:
« control group (blue) and linear regression
 high risk group (red)

Collaboration Predict-HD, U-lowa



Towards subject-specific analysis

4D Normative Atlas: Cross-sectional shape
regression of controls

T 4D Normative
pN—AN— Y Shape Atlas
TARTTART AR T AR —
r‘r‘ﬂ-.._____ﬁ .
Shape 'y
Space
Age 4D Normative Shape Atlas:

> 23 to 88 years, 243 subjects
Cross-sectional Regression

S. Hong et al, SPIE 2017



Statistics on Deformations

242 Shape Statistics performed by Deformetrica < 0
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Most discriminative deformation axis between groups.
Durrleman et al, Neuroimage 2014



Towards subject-specific analysis

Shape Representation via 3D Skeleton

3D surface 3D skeleton

Color: corresponding points between surface and skeleton

« 3D skeletonization of shapes (Hamilton-
Jacobian, Siddiqi et al.)

* Preliminary: Analysis of Thickness
(Radii)

S. Hong et al, SPIE 2017



Medial Axis / Skeletal Representations:
Intrinsic Shape Model
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Medial atom: position (p), radius (r), and two normals to
y (U).
M-rep: Pizer et al. Gorczowski et al., T-PAMI 2010,

Stats on deformations vs. thickness

(discrete)

CM-rep: Yushkevich
(continuous, parametric)




Age-related changes:
Pose & Shape

47 years I

24 years 24 years 3 24 years
0.8 1 2.E A 47 years e = . 70 years
18 } o
0.4 4 a4
0.3 1 w3
0.z %]
0.1 L
oo T T T r [RH

il 1 2 3 4 5 o 1 2 3 4 5
Radius {mm) Radius {mm) Radius {mm)

Skeletal radius histogram: Thinning from 24 to 70 years

S. Hong et al, submitted ISBI 2017



Probability

Preliminary Results

Radius distribution of left caudate

24 years

Radius rate of change
-0.010 -0.008 -0.006 -0.004 -0.002

0.7

0.5 1

0.4+

0.24

24 years

0.0

Shape Thinning/
Degeneration:

Shift to lower
values (left)

S. Hong et al, submitted ISBI 2017



Towards subject-specific analysis

Question: Longitudinal Change in Normal
versus Abnormal?

h 4D Normative
| D Shape Atlas
fR—_
Shape T %

v
Space (AY
ALY
High Risk  \

HD Subject /1 ;‘J Aige 4D Normative Shape Atlas:

4 . 23 to 88 years, 243 subjects

>

 Map 4D Model of Individuals into 4D Normative Atlas
« Analysis of Shape Distance to Norm: Decoupling of age
versus pathological effects

S. Hong et al, SPIE 2017



Multi-object example:
Caudate Shape Trajectory

" E].HS]
3.939¢-01

Caudate-putamen Skeletal representations ~ Reconstructions from

Shapes with skeletons skeletal intrinsic
descriptions illustrating
local radii/width
information

Radius
Ed .846e+00

£3.3394




Towards subject-specific analysis

2.5

I

o

0o

(a) Control (b) High (¢) EMD box plot

Comparison of individual’'s time points (red) to atlas
(blue), age progression top to bottom.
Quantitative analysis: Earth movers distance (EMD)

S. Hong et al, SPIE 2017



Probability
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Glaucoma Research

H. Ishikawa, J. Schuman, Ch. Girot, J. Fishbaugh, G. Gerig
NYU Ophthalmology / Tandon

Vitreous gel

Lamina
Cribrosa

Goal:

* Pressure may cause axonal
damage

» to study deformations of lamina
cribrosa due to external pressure

Clinical Design:

Baseline |IOP1 |IOP2 Recovery



Spatiotemporal Analysis
of Lamina Cribrosa
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IBIS Network - Infant Brain Imaging Study

S  Brain development in Autism: Infant Siblings

Infant Brair: | maging Study

“Prisma Switch”

Upgrade
yvour MAGNETOM Trio »

MAGNETOM Prisma
The 3T PowerPack for
exploration. »

SIEMENS PR: The latest MRI
technology will provide you with
virtually unlimited imaging and

innovation capabilities and

long-lasting stability, even for
long examinations — perfect for
the most demanding research
quests.




|
News: Prisma Images
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But: Established Processing

s provides differences for Prisma

TBV Volume (in mm3)
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Human traveling phantoms, repeated annual scans over 3 years
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Software Engineering & Sharing

e Open-source/open-platform

3DSlicer QFmer‘HEWEf

CRrcurmnferences

* |Industrial collaborations
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Conclusions
Spatio-temporal 4D Image & Shape Analysis:

— Most clinical neuroimaging studies include longitudinal design.
— Challenging fundamental, algorithmic and statistical problems.
— Research progress enables new scientific discoveries.

Clinically relevant for quantitative analysis of subject-specific,
personalized changes due to disease or therapy.

Longitudinal data benefits from longitudinal image analysis #
cross-sectional analysis

Image data (autism) freely available to public via NIH NDAR
Challenges:

— Image data calibration across scanners/time: DL promising
— 4D data: Annotated data? High-dim data?
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