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Machine Learning in Medical 
Imaging: Opportunities

• Machine learning techniques are starting to reach levels of 
human performance in challenging visual tasks

• Big data is slowly arriving in medical imaging

UK Biobank will provide large-scale imaging data from 100,000 subjects
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Machine Learning in Medical 
Imaging: Opportunities

• Machine learning techniques are starting to reach levels of 
human performance in challenging visual tasks

• Big data is slowly arriving in medical imaging

Computer Aided Decision Support

Computer Aided Diagnosis

Quantification of Imaging Biomarkers, 
e.g. Image Segmentation

Computer Aided Detection

Image Reconstruction & 
Enhancement

UK Biobank will provide large-scale imaging data from 100,000 subjects



Machine Learning in Medical 
Imaging: Challenges

• Images are often 3D or 4D:
– # of voxels and # of extracted features is very large

• Number of images is limited:
– large data set means typically 100 to 1000 images
– “small sample size problem”

• Training data is expensive:
– annotation of images is resource intensive (manpower, cost, time)
– crowdsourcing not possible

• Training data is imperfect:
– training data may be wrongly labelled, e.g. for diseases such as 

Alzheimer’s confirmation requires pathology (difficult and costly to 
obtain)



Machine Learning in Medical 
Imaging: Challenges

• Images are highly variable
– Different scanner hardware
– Different imaging sequences
– Images have artefacts

• Presence or absence of pathologies

Siemens Philips GE

Normal Abnormal



Overview 

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Image classification 

Abdominal View 
Confidence: 98%

Image reconstruction & 
super-resolution 



MR image acquisition: Challenges

• Magnetic Resonance Imaging (MRI)
– MRI acquisition is inherently a slow process
– Slow acquisition is 

• ok for static objects (e.g. brain, bones, etc)
• problematic for moving objects (e.g. heart, liver, fetus)

– Options for MRI acquisition:
• real-time MRI: fast, but 2D and relatively poor image quality
• gated MRI: fine for period motion, e.g. respiration or cardiac 

motion but requires gating (ECG or navigators) leading to 
long acquisition times (30-90 min).



Example: Cardiac imaging

Myocardium!

Left Ventricle!

Right Ventricle!



• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

MR full acquisition

K-space

t = 0

Signal space

MR acquisition process is slow



MR full acquisition

t = 1

K-space Signal space

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.
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MR full acquisition

K-space

t = T

Signal space

• MRI acquisition is performed in k-space by sequentially 
traversing sampling trajectories.

There is significant spatio-temporal re
dundancy



• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.

K-space undersampling



• Acquiring a fraction of k-space accelerates the process 
but introduces aliasing in signal space.

K-space undersampling

K-space Signal space

Full sampling 
(slow)

25% sampling 
(4-fold 

acceleration)



Deep Cascade of CNNs for MRI 
Reconstruction
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Deep Cascade of CNNs for MRI 
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Magnitude reconstruction (6-fold)

(a) 6x Undersampled                (b) DLTG                            (c) CNN                       (d) Ground Truth

 Schlemper et al. IEEE TMI 2017



Magnitude reconstruction (11-fold)

(a) 11x Undersampled               (b) DLTG                            (c) CNN                       (d) Ground Truth

 Schlemper et al. IEEE TMI 2017



Deep Cascade of CNNs for MRI 
Reconstruction: Results

• Test error across 10 subjects:
2D, PSNR: mean (sd)                           2D+t (vs. DLTG)

Model R=4 (dB) R=8 (dB)
DLTG 27.5 (1.31) 22.6 (0.95)
CNN 31.0 (1.08) 25.2 (1.00)

 Schlemper et al. IEEE TMI 2017



Deep Cascade of CNNs for MRI 
Reconstruction: Results

• Test error across 10 subjects:
2D, PSNR: mean (sd)                           2D+t (vs. DLTG)

Reconstruction speed

Model R=4 (dB) R=8 (dB)
DLTG 27.5 (1.31) 22.6 (0.95)
CNN 31.0 (1.08) 25.2 (1.00)

Model Time
DLMRI/DLTG ~6 hr (CPU)

CNN (2D) 0.69 s (GPU)
CNN (2D+t) 10 s (GPU)

 Schlemper et al. IEEE TMI 2017



Still, cardiac imaging is challenging

• Acquisition of cardiac MRI 
typically consists of 2D multi-
slice data due to
– constraints on SNR
– breath-hold time
– total acquisition time

• This leads to thick slice data 
(thickness 8-10 mm per slice)

Slice	I

Slice	II

Slice	III



Still, cardiac imaging is challenging

4	-	Chamber 
LAX	Slice

2	-	Chamber 
LAX	Slice

• Acquisition of cardiac MRI 
typically consists of 2D multi-
slice data due to
– constraints on SNR
– breath-hold time
– total acquisition time

• This leads to thick slice data 
(thickness 8-10 mm per slice)

• Images are acquired in 
different orientations:
– short-axis
– long-axis, i.e.

• 2CH or 4CH views



Still, cardiac imaging is challenging:
Low and High Resolution Images

Down-sampling

Sub-sampling	grid

3D HR Image

Image	Super	
Resolution	
Model

Input

O
utput????

2D	LAX	Images

Sinc	Filter

PSF	kernel	and		
pa:ent	mo:on

2D	SAX	Images



Proposed 3D-SR Model 
(Single-Image)

Components of the model
- 3D Convolution and Deconvolution (inverse convolution) Kernels

- Rectified Linear Units (ReLUs)
- Regression Based Cost Function (Smooth L1-Norm)
- Input (2D Stack-LR) and Output (3D-HR) Images

O. Oktay et al. MICCAI 2016



Proposed 3D-SR Model 
(Multi-Image)

– Siamese model is used to combine information from multiple stacks
– The learned kernels can be easily integrated in this multi-model

O. Oktay et al. MICCAI 2016



Image Quality Assessment  

Upsampling x5  

Inference Time: 6-8 Seconds for image size (140x140x10)

Low	Resolution 
	Input	Image

Linear	 
Interpolation

Proposed	
Method

High	Resolution 
Ground-truth

O. Oktay et al. MICCAI 2016



Surface	to	Surface	Distance 
(Proposed	vs	HR)	4.73	mm	

Surface	to	Surface	Distance 
(Linear	vs	HR)	5.50	mm	

Motion Tracking Experiments  
(SR is used as a preprocessing method)



Overview 

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Abdominal View 
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Image reconstruction & 
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• Aim: Better fetal screening with US
– Use multiple US probes to acquire more 

comprehensive imaging data
– Use robotic control of US probes to ensure 

wider field of view
– Use machine learning for automated US 

image acquisition and interpretation

• Partners:



Automatic Standard Scan 
Plane Detection

Abdominal View 
Confidence: 98%

Lips View 
Confidence: 96%

Goal: Do this in real-time on images straight from US machine



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers

Background (75%)



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers
– Convenience: Automatically 

make a check list of visited 
planes

Abdominal 
Brain (Tv.) 
Brain (Cb.) 
Femur 
Kidneys 
Spine 
Lips 
4CH 
RVOT 
LVOT



Automatic Standard Scan 
Plane Detection

• Potential applications:
– Guidance: Assist 

inexperienced sonographers
– Convenience: Automatically 

make a check list of visited 
planes

– Reproducibility: Reduce 
variability between operators



Automatic Standard Scan 
Plane Detection: Method

• Fully convolutional neural network:

– Very fast
– Very accurate

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan 
Plane Detection: Data

• We use very large 2D ultrasound dataset consisting 
of images of standard views and videos 

• Data from
– 2700 patients
– Between 1200 and 4800 images for each standard plane



Demo



Automatic Standard Scan 
Plane Detection: Localisation

Localisation is (almost) for free in this framework!
C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Automatic Standard Scan 
Plane Detection: Localisation

• Can also identify which regions of a frame caused it to 
make a particular prediction

• This can be used for localisation of the fetal anatomy 
without having bounding boxes for training

C. Baumgartner et al. MICCAI 2016, IEEE-TMI 2017



Demo



Standard Plane Detection from 3D 
Ultrasound

• Motivation
– 3D ultrasound data is hard to interpret directly on the US 

scanner 
– We aim for a system that can automatically extract standard 2D 

views from a 3D view at any probe position

• Eventually, we would like this to work in real-time



Overview 

Image registrationImage segmentation

Figure 13: Examples of segmentations performed by our system on the train-
ing datasets of (SISS) ISLES 2015. (top and middle) The system is capable of
satisfying segmentation of both large and smaller lesions. (bottom) Common
mistakes are performed due to the challenge of di↵erentiating stroke lesions
from White Matter lesions.

not found necessary in the scope of this work.

5. Discussion and Conclusion

We have presented DeepMedic, a 3D CNN architecture for automatic le-
sion segmentation that surpasses state-of-the-art on challenging data. The
proposed novel training scheme is not only computationally e�cient but also
o↵ers an adaptive way of partially alleviating the inherent class-imbalance
of segmentation problems. We analyzed the benefits of using small convolu-
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Convolutional Neural Networks

Dog

Convolution + RELU

Max pooling

Fully connected layer

Softmax



Convolutional Neural Networks

Cat

Convolution + RELU

Max pooling

Fully connected layer

Softmax



Convolutional Neural Networks 
for Image Segmentation

• Different architectures:
– Fully convolutional networks (Long et al., 2015)
– U-Net (Ronneberger et al., 2015)
– DeepMedic (Kamnitsas et al., 2016)

Chapter 2. Background 2.5. TRANSFER LEARNING

Figure 2.2: A 224 by 224 image (with 3 color planes) is presented as the input. Through a stack of
convolutional layers ( kernel size=3*3, stride=1,zero padding=2), 2 by 2 max-pooling layers after each
block and fully-connected layers followed by softmax function, it outputs a 1000 dimension probability
vector. For an image containing a cat, it will output the label class ’cat’ with highest probability.

for classification. By initialization, a set of filters in the first several levels are ready to learn
general features such as edge, shape. For example,Bar et al. used pre-trained CNNs to generate
low-level features for identifying chest pathology. Specifically, they adapted ’AlexNet’ (Krizhevsky
et al., 2012) which is pre-trained for ImageNet Classification task. They transferred it to their chest
pathology detection with their chest CT images. Supervised fine-tuning was then conducted to
the entire network to the novel task by training end-to-end with back-propagation and stochastic
gradient descent. Through this way, they managed to perform chest pathology detection with high
accuracy. One of the advantages is it can significant lreduce in time costs. While deep convolu-
tional neural networks take weeks to train and require large datasets, this approach has a benefit
of training with limited data efficiently. The intuitive behind this scheme is the fact that CNNs can
learn general low-level features which are suitable for all task.

Among the famous network structures mentioned in the section 2.4, many image analysis tasks
use VGG net as their primary structure to start with(Fowler, 2012; Noh et al., 2015; Huang et al.,
2015). Although GoogleNet and ResNet achieve better performance than VGG net, the largest bot-
tleneck for them is the memory bottleneck Simonyan2015. The memory of many modern GPUs
is limited to 3/4/6GB while the best GPUs having about 12GB of memory Simonyan2015. On
the other hand, as bigger size typically means a larger number of parameters, which makes the
extended network more prone to over-fitting, especially if the number of labeled examples in the
training set is limited. VGG-D (Simonyan and Zisserman, 2015), also called VGG-16, consists 3 by
3 convolution layer with 2*2 max pooling and 3 fully-connected layers perform 3x3 convolutions
with stride 1, and zero pad 1, which requires 93M per image in the forward pass and the total
parameters is 138M which is relatively smaller than GoogleNet (Simonyan and Zisserman, 2015).

In conclusion, we would prefer to choose the deep model VGG net (Simonyan and Zisserman,
2015) with 16 layers (VGG-D) as a basic structure for this project and explore the benefit of transfer
learning.
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Convolution + RELU
Max pooling

Unpooling (transposed convolution)
Softmax Skip layers



Convolutional Neural Networks 
for Image Segmentation

• Different architectures:
– Fully convolutional networks (Long et al., 2015)
– U-Net (Ronneberger et al., 2015)
– DeepMedic (Kamnitsas et al., 2016)

Convolution + RELU
Max pooling

Transposed convolution
Softmax Skip layers



Image segmentation as a 
machine learning problem

• Fully connected networks (Long et al., 2015)
• Manual annotations of 4,872 subjects (QMUL/Oxford) 

with 93,128 pixelwise annotated 2D images slices
• Divided into training/validation/test: 3,972/300/600

RESEARCH Open Access

Reference ranges for cardiac structure and
function using cardiovascular magnetic
resonance (CMR) in Caucasians from the UK
Biobank population cohort
Steffen E. Petersen1*, Nay Aung1, Mihir M. Sanghvi1, Filip Zemrak1, Kenneth Fung1, Jose Miguel Paiva1,
Jane M. Francis2, Mohammed Y. Khanji1, Elena Lukaschuk2, Aaron M. Lee1, Valentina Carapella2, Young Jin Kim2,3,
Paul Leeson2, Stefan K. Piechnik2 and Stefan Neubauer2

Abstract

Background: Cardiovascular magnetic resonance (CMR) is the gold standard method for the assessment of cardiac
structure and function. Reference ranges permit differentiation between normal and pathological states. To date,
this study is the largest to provide CMR specific reference ranges for left ventricular, right ventricular, left atrial and
right atrial structure and function derived from truly healthy Caucasian adults aged 45–74.

Methods: Five thousand sixty-five UK Biobank participants underwent CMR using steady-state free precession
imaging at 1.5 Tesla. Manual analysis was performed for all four cardiac chambers. Participants with non-Caucasian
ethnicity, known cardiovascular disease and other conditions known to affect cardiac chamber size and function
were excluded. Remaining participants formed the healthy reference cohort; reference ranges were calculated and
were stratified by gender and age (45–54, 55–64, 65–74).

Results: After applying exclusion criteria, 804 (16.2%) participants were available for analysis. Left ventricular (LV)
volumes were larger in males compared to females for absolute and indexed values. With advancing age, LV
volumes were mostly smaller in both sexes. LV ejection fraction was significantly greater in females compared to
males (mean ± standard deviation [SD] of 61 ± 5% vs 58 ± 5%) and remained static with age for both genders. In
older age groups, LV mass was lower in men, but remained virtually unchanged in women. LV mass was
significantly higher in males compared to females (mean ± SD of 53 ± 9 g/m2 vs 42 ± 7 g/m2). Right ventricular (RV)
volumes were significantly larger in males compared to females for absolute and indexed values and were smaller
with advancing age. RV ejection fraction was higher with increasing age in females only. Left atrial (LA) maximal
volume and stroke volume were significantly larger in males compared to females for absolute values but not for
indexed values. LA ejection fraction was similar for both sexes. Right atrial (RA) maximal volume was significantly
larger in males for both absolute and indexed values, while RA ejection fraction was significantly higher in females.

Conclusions: We describe age- and sex-specific reference ranges for the left ventricle, right ventricle and atria in
the largest validated normal Caucasian population.

Keywords: Cardiovascular magnetic resonance, Reference values, Ventricular function, Atrial function
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SA, basal SA, mid-ventricular SA, apical

LA, 2 chamber LA, 4 chamber



Evaluation of segmentation accuracy
Comparison to expert observers

Extended Data Table 4: The di↵erence in clinical measures between automated segmentation and manual

segmentation, as well between segmentations by di↵erent human observers. The first column shows the
di↵erence between automated and manual segmentations on a test set of 600 subjects. The second to fourth columns
show the inter-observer variability, which is evaluated on a randomly selected set of 50 subjects, each being analysed
by three di↵erent human observers (O1, O2, O3) independently. The mean and standard deviation of the absolute
di↵erence and relative di↵erence are reported.

(a) Absolute di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (mL) 6.1±5.3 6.1±4.4 8.8±4.8 4.8±3.1

LVESV (mL) 5.3±4.9 4.1±4.2 6.7±4.2 7.1±3.8

LVM (gram) 6.9±5.5 4.2±3.2 6.6±4.9 6.5±4.8

RVEDV (mL) 8.5±7.1 11.1±7.2 6.2±4.6 8.7±5.8

RVESV (mL) 7.2±6.8 15.6±7.8 6.6±5.5 11.7±6.9

(b) Relative di↵erence

Auto vs Man O1 vs O2 O2 vs O3 O3 vs O1

(n = 600) (n = 50) (n = 50) (n = 50)

LVEDV (%) 4.1±3.5 4.2±3.1 6.3±3.3 3.4±2.2

LVESV (%) 9.5±9.5 6.8±7.5 12.5±8.5 11.7±5.1

LVM (%) 8.3±7.6 4.4±3.3 6.0±3.7 6.7±4.6

RVEDV (%) 5.6±4.6 8.0±5.0 4.2±3.1 5.7±3.6

RVESV (%) 11.8±12.2 30.6±15.5 10.9±8.3 16.9±9.2

Extended Data Table 5: The Dice metric, mean contour distance (MCD) and Hausdor↵ distance (HD)

between automated segmentation and manual segmentation for long-axis images. The mean and standard
deviation are reported on a test set of 600 subjects.

Dice MCD (mm) HD (mm)

LA cavity (2Ch) 0.93±0.05 1.46±1.06 5.76±5.85

LA cavity (4Ch) 0.95±0.02 1.04±0.38 4.03±2.26

RA cavity (4Ch) 0.96±0.02 0.99±0.43 3.89±2.39

9
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Challenges for image segmentation:
Pathologies

May be present or absent

Appearance can local or 
diffuse

Location & size of pathologies 
varies significantly



DeepMedic: Overview

• Baseline CNN architecture:
– Four layers with 53 kernels for feature extraction, leading to a 

receptive field of size 173. 
– The classification layer is implemented as convolutional with 13 

kernels, which enables efficient dense inference.
– Cross-entropy as loss function

the kernels kl = (km,1
l , ...,km,Cl�1

l ) can be viewed as a 4-dimensional kernel

convolving the concatenated channels yl�1 = (y1

l�1
, ...,yCl�1

l�1
), which then in-

tuitively expresses that the neurons of higher layers combine the patterns
extracted in previous layers, which results in the detection of increasingly
more complex patterns. The activations of the neurons in the last layer L
correspond to particular segmentation class labels, hence this layer is also
referred to as the classification layer. The neurons are thus grouped in CL

FMs, one for each of the segmentation classes. Their activations are fed
into a position-wise softmax function that produces the predicted posterior
pc(x) = exp(yc

L(x))/
PCL

c=1
exp(yc

L(x)) for each class c, which form soft seg-
mentation maps with (pseudo-)probabilities. yc

L(x) is the activation of the
c-th classification FM at position x 2 N3. This baseline network is depicted
in Fig. 2.

Figure 2: Our baseline CNN consists of four layers with 53 kernels for feature
extraction, leading to a receptive field of size 173. The classification layer is
implemented as convolutional with 13 kernels, which enables e�cient dense-
inference. When the network segments an input it predicts multiple voxels
simultaneously, one for each shift of its receptive field over the input. Number
of FMs and their size depicted as (Number ⇥ Size).

The neighborhood of voxels in the input that influence the activation of
a neuron is its receptive field. Its size, 'l, increases at each subsequent layer
l and is given by the 3-dimensional vector:

'{x,y,z}
l = '{x,y,z}

l�1
+ ({x,y,z}

l � 1)⌧ {x,y,z}
l , (1)

where l, ⌧l 2 N3 are vectors expressing the size of the kernels and stride of
the receptive field at layer l. ⌧l is given by the product of the strides of kernels
in layers preceding l. In this work only unary strides are used, as larger
strides downsample the FMs (Springenberg et al. (2014)), which is unwanted
behaviour for accurate segmentation. Thus in our system ⌧l = (1, 1, 1). The
receptive field of a neuron in the classification layer corresponds to the image

9
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DeepMedic: Overview

• The size of receptive field of CNNs is important:
– Large receptive increases computation and memory requirements 
– Pooling leads to loss of the spatial information

• Solution: Use multi-scale approach

Figure 5: Multi-scale 3D CNN with two convolutional pathways. The kernels
of the two pathways are here of size 53 (for illustration only to reduce the
number of layers in the figure). The neurons of the last layers of the two
pathways thus have receptive fields of size 173 voxels. The inputs of the two
pathways are centered at the same image location, but the second segment
is extracted from a down-sampled version of the image by a factor of 3.
The second pathway processes context in an actual area of size 513 voxels.
DeepMedic, our proposed 11-layers architecture, results by replacing each
layer of the depicted pathways with two that use 33 kernels (see Sec. 2.3).
Number of FMs and their size depicted as (Number ⇥ Size).

�{x,y,z}
L2 � 1 and similar is the relation between �in1 and �L1. These establish

the relation between the required dimensions of the input segments from the
two resolutions, which can then be extracted centered on the same image
location. The FMs of L2 are up-sampled to match the dimensions of L1’s
FMs and are then concatenated together. We add two more hidden layers for
combining the multi-scale features before the final classification, as shown in
Fig. 5. Integration of the multi-scale parallel pathways in architectures with
non-unary strides is discussed in Appendix A.

Combining multi-scale features has been found beneficial in other recent
works (Long et al. (2015); Ronneberger et al. (2015)), in which whole 2D im-
ages are processed in the network by applying a few number of convolutions
and then down-sampling the FMs for further processing at various scales.
Our decoupled pathways allow arbitrarily large context to be provided while
avoiding the need to load large parts of the 3D volume into memory. Ad-
ditionally, our architecture extracts features completely independently from
the multiple resolutions. This way, the features learned by the first pathway
retain finest details, as they are not involved in processing low resolution

15

K. Kamnitsas et al. Medical Image Analysis, 2016

Full resolution

Low resolution



DeepMedic: Results

Figure 9: (Rows) Two cases from the severe TBI dataset, showing represen-
tative improvements when using the multi-scale CNN approach. (Columns)
From left to right: the MRI FLAIR sequence with the manually labeled le-
sions, predicted soft segmentation map obtained from a single-scale model
(Deep+) and the prediction of the multi-scale DeepMedic model. The incor-
poration of greater context enables DeepMedic to identify when it processes
an area within larger lesions (top). Spurious false positives are significantly
reduced across the image on the bottom.

61.5% average DSC on the validation fold. The decline from the 66.6% DSC
achieved by the 3D version of DeepMedic indicates the importance of pro-
cessing 3D context even in settings where most acquired sequences have low
resolution along a certain axis.

4. Evaluation on Clinical Data

The proposed system consisting of the DeepMedic CNN architecture, op-
tionally coupled with a fully connected CRF, is evaluated on three lesion

22

Manual DeepMedic 
(single scale)

DeepMedic 
(multi-scale)

Patients with  
severe TBI

K. Kamnitsas et al. Medical Image Analysis, 2016



DeepMedic in Action

K. Kamnitsas et al. Medical Image Analysis, 2016



• 66 patients with moderate-to-severe Traumatic Brain Injury (TBI)
• Imaging at Addenbrooke’s Hospital, Cambridge, with 3T Siemens 

Trio within the first week of injury. 
• MRI sequences include 

– MPRAGE
– FLAIR, T2, Proton Density (PD) and Gradient-Echo (GE)

DeepMedic: Results

Figure 10: (Top) DSC achieved by our ensemble of three networks on each of
the 61 TBI datasets. (Bottom) Manually segmented (black) and predicted
lesion volumes (red). Note here the logarithmic scale. Continuous lines
represent mean values. The outlying subject 12 presents small TBI lesions,
which are successfully segmented, but also vascular ischemia. Because it is
the only case in the database with the latter pathology, the networks fail to
segment it as such lesion was not seen during training.

into di↵erent sets of whole tumor (all four classes), the core (classes 1,3,4),
and the enhancing tumor (class 4)3. For each subject, four MRI sequences are
available, FLAIR, T1, T1-contrast and T2. The datasets are pre-processed by
the organizers and provided as skull-stripped, registered to a common space
and resampled to isotropic 1mm3 resolution. Dimensions of each volume
are 240⇥240⇥155. We add minimal pre-processing of normalizing the brain-
tissue intensities of each sequence to have zero-mean and unit variance.

4.2.2. Experimental Setting
Network configuration and training: We modify the DeepMedic ar-

chitecture to handle multi-class problems by extending the classification layer
to five feature maps (four tumor classes plus background). The rest of the
configuration remains unchanged. We enrich the dataset with sagittal re-
flections. Opposite to the experiments on TBI, we do not employ the inten-

3For interpretation of the results note that, to the best of our knowledge, cases where
the “enhancing tumor” class is not present in the manual segmentation are considered as
zeros for the calculation of average performance by the evaluation platform, lowering the
upper bound for this class.
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Challenges for image segmentation:
Deployment in the clinic

• ML-based segmentation often 
degrades when deployed in clinical 
scenarios

• This is caused by differences 
between training and test data, e.g. 
due to variations in 

• scanner hardware
• scanner protocols and sequences

• Manually annotating new data for 
each test domain is not a feasible 
solution

Unsupervised domain adaptation using adversarial 
neural networks can be used to train a CNN-based 
segmentation 

– which is more invariant to differences in the input data
– which does not require any annotations on the test domain



Deploying machine learning into 
clinical practice: What is the problem?

Domain: 
Task: 
Given: 

Learn:                                     

Source (S)

Domain: 
Task:
Here: 
Domain Shift:

Target (T)

Source (S)Target (T)

Domain Shift !



Solution: Unsupervised domain 
adaptation with adversarial networks

• Learn a domain classifier 

• Minimize accuracy of domain-classifier      via back-prop
– Learn an adapted domain invariant classifier 

Ganin et al. JMLR 2016

Scalable solution !



DeepMedic: Unsupervised domain 
adaptation with adversarial networks

• Segmenter: CNN implemented via DeepMedic
– Dashed lines denote low resolution features. 

• Discriminator: CNN for classifying the domain of 
input

4 Kamnitsas et al.

Fig. 1: Proposed multi-connected adversarial networks. Segmenter: we use the 3D CNN
architecture presented in [10]. Dashed lines denote low resolution features. Input sam-
ples are multi-modal, although not depicted. Discriminator: We use a second 3D CNN
for classifying the domain of input x, by processing activations at multiple layers of
the segmenter. Red lines show the path of the adversarial gradients, from Ladv back
to the segmenter. See text for details on architecture.

2.1 Segmentation system with domain discriminator

Segmenter: At the core of our system is a fully convolutional neural network
(CNN) for image segmentation [12]. Given an input x of arbitrary size, which
can be a whole image or a sub-segment, this type of network predicts labels
for multiple voxels in x, one for each stride of the network’s receptive field
over the input. The parameters of the network ✓seg are learnt by iteratively
minimizing a segmentation loss Lseg using stochastic gradient descent (SGD).
The loss is commonly the cross-entropy of the predictions on a training batch
Bseg =

�
(x1, y1), ..., (xNseg , yNseg )

 
of Nseg samples. In our settings, (xi, yi)

are sampled from the source database S = (XS , YS), for which labels YS are
available. We borrowed the 3D multi-scale CNN architecture from [10], depicted
in Fig 1 and adopt the same configuration for all meta-parameters.

Domain discriminator: When processing an input x, the activations of
any feature map (FM) in the segmenter encode a hidden representation h(x). If
samples come from di↵erent distributions P (XS) 6= P (XT ), e.g. due to di↵erent
domains, and the filters of the segmenter are not invariant to the domain-specific
variations, the distributions of the corresponding activations will di↵er as well,
P (h(XS)) 6= P (h(XT )). This is expected when the segmenter is trained only
on samples from S where learnt features will be specific to the source domain.
Similar to [5], we choose a certain representation ha(x) from the segmenter and
use a second network as a domain-classifier that takes ha(x) as input and tries to
classify whether it comes from P (ha(XS)) or P (ha(XT )). This is equivalent to
classifying the domain of x. Classification accuracy serves as an indication of how
source-specific the representation ha(·) is. The architecture we use for a domain
classifier is a 3D CNN with five layers. The first four have 100 kernels of size
33. The last classification layer uses 13 kernels. This architecture has a receptive
field of 93 with respect to its input ha(·) and was chosen for compatibility with
the size of feature maps in the 3 last layers of the segmenter.

We train this domain-discriminator simultaneously with the segmenter. For
this, we form a second training batch Badv =

�
(x1, yd1), ..., (xNadv , y

d
Nadv

)
 
. Equal

number of samples xi are extracted from XS and XT , so there is no bias towards

K. Kamnitsas et al. IPMI 2017,  arXiv:1612.08894
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Fig. 1: Proposed multi-connected adversarial networks. Segmenter: we use the 3D CNN
architecture presented in [10]. Dashed lines denote low resolution features. Input sam-
ples are multi-modal, although not depicted. Discriminator: We use a second 3D CNN
for classifying the domain of input x, by processing activations at multiple layers of
the segmenter. Red lines show the path of the adversarial gradients, from Ladv back
to the segmenter. See text for details on architecture.
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can be a whole image or a sub-segment, this type of network predicts labels
for multiple voxels in x, one for each stride of the network’s receptive field
over the input. The parameters of the network ✓seg are learnt by iteratively
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are sampled from the source database S = (XS , YS), for which labels YS are
available. We borrowed the 3D multi-scale CNN architecture from [10], depicted
in Fig 1 and adopt the same configuration for all meta-parameters.

Domain discriminator: When processing an input x, the activations of
any feature map (FM) in the segmenter encode a hidden representation h(x). If
samples come from di↵erent distributions P (XS) 6= P (XT ), e.g. due to di↵erent
domains, and the filters of the segmenter are not invariant to the domain-specific
variations, the distributions of the corresponding activations will di↵er as well,
P (h(XS)) 6= P (h(XT )). This is expected when the segmenter is trained only
on samples from S where learnt features will be specific to the source domain.
Similar to [5], we choose a certain representation ha(x) from the segmenter and
use a second network as a domain-classifier that takes ha(x) as input and tries to
classify whether it comes from P (ha(XS)) or P (ha(XT )). This is equivalent to
classifying the domain of x. Classification accuracy serves as an indication of how
source-specific the representation ha(·) is. The architecture we use for a domain
classifier is a 3D CNN with five layers. The first four have 100 kernels of size
33. The last classification layer uses 13 kernels. This architecture has a receptive
field of 93 with respect to its input ha(·) and was chosen for compatibility with
the size of feature maps in the 3 last layers of the segmenter.

We train this domain-discriminator simultaneously with the segmenter. For
this, we form a second training batch Badv =
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(x1, yd1), ..., (xNadv , y
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Segmenter:
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Unsupervised domain adaptation with adversarial networks 9

quence is not available, which corresponds to a very low value after our intensity
normalization. From this the CNN learns when the sequence is missing and we
found this to behave better than common zero-filling. The segmenter performs
better than supervised training on T only. This indicates that information from
both domains is used. However, knowledge transfer is not as strong as when GE
and SWI, which share much information, are used in the same channel.

Proposed unsupervised domain adaptation: We train the segmenter on
all data of S and adapt the domains using half the subjects of T , but no labels.
GE and SWI share the same input channel. We test segmentation accuracy on
the other half of T . The experiment is repeated for the other fold. Our method
learns filters invariant to the two imaging protocols and transfers knowledge
from S to T , allowing the system to segment haemorrhages only visible on SWI
without ever seeing a manual annotation from T (Fig. 2). This improves by 3%
DSC over the non-adapted segmenter that uses only information from S and the
common sequences, covering 44% of the di↵erence between the practical lower
bound and the upper bound achieved by supervised domain adaptation using
labels from both domains.

Fig. 2: (top row) Example case from S. (middle/bottom row) Visual results for two
examples. A model trained on S fails on T when GE is simply replaced by SWI (3rd
col.). A model trained on S using only the four common sequences misses micro-
bleeds visible only on SWI (4th col.). Our method mitigates these problems by learning
features invariant to the imaging protocol (5th col.). (T2, MPRAGE and PD of T are
used but not depicted.)



DeepMedic, FCN & U-Net

• The good:
– There are some good/promising CNN-based segmentation 

approaches (DeepMedic, FCN & U-Net)

• The bad:
– A lot of meta-parameters
– Architecture & config influence performance
– Architecture & config influence behavior 

• The ugly:
– Chosen model & config may be suboptimal for other data/task
– Results and conclusions of analysis are strongly biased

Ensemble of Multiple Models & Architectures (EMMA) 

Performance insensitive to suboptimal configuration 

Behaviour unbiased by architecture & configuration



Ensemble of Multiple Models 
 and Architectures (EMMA)

Need to learn:

Approximate it by model:

Model is defined by chosen meta-parameters m.

with learnt parameters 

Commonly m is neglected, but it biases the results! 

, d the loss.

We define stochastic variable M, over configurations of interest.

Need to marginalise out influence of M:

EMMA approximate the joint by ensembling individual models:



M: Network architectures

DeepMedic [Kamnitsas 2015, 2016, 2017]: https://github.com/Kamnitsas 

FCN [Long 2015]:  
https://github.com/DLTK

U-Net [Ronneberger 2015]: 
https://gitlab.com/eferrante



M: Network configurations

• Architecture configuration: 
– depth, width, scales, residuals, etc.

• Training Loss: 
– Cross-Entropy, IoU, DSC, etc.

• Sampling strategy: 
– equally per class, foreground/background, etc.

• Optimisation: 
– optimizer, learning rate, momentum, regulariser…

• Data normalisation: 
– z-score, bias field correction, histogram matching





BRATS’17 Challenge:  
Quantitative validation

• EMMA: 2 x DeepMedic, 3 x FCNs, 1 x U-Net
– Different training losses, sampling strategies, widths, depths, configurations
– No config was heavily optimised for the task (3/6 nets were quite suboptimal)

• Robustness:
– EMMA of all 6 was better than individuals.
– Ensemble of 3 best nets was only marginally better than EMMA of all 6 nets.



Conventional CNNs: Do not use prior 
knowledge explicitly

• Analysis of Neural Networks 
– Model parameterization 
– Model capacity / receptive field
– Loss function / objective

• Standard Loss Functions
– X-Entropy loss function 

– L2 or Smooth L1 loss function

Lx = �
X

i2S

CX

c=1

log

 
ef(c,i)P
j e

f(j,i)

!

X

i2S
k�(xi, ✓r)� yi k

2



Conventional CNNs: Problem

Input	Image

Input	Image

Input	Image

Super-re
solution

Segmentation



Conventional CNNs: What we want

Input	Image

Input	Image
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Segmentation
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Learn anatomical priors using a 
stacked convolutional autoencoder

• Provides a non-linear compact representation of the 
underlying anatomy
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Anatomically constrained CNN: 
T-L networks for representing priors
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Figure 6.3: Block diagram of the stacked convolutional autoencoder (AE) network (in grey),
which is trained with segmentation labels. The AE model is coupled with a predictor network (in
blue) to obtain a compact non-linear representation that can be extracted from both intensity
and segmentation images. The whole model is named as T-L network.

structure in the output space. For this reason, the global description of predictions is usually

not adhering to shape, label, or atlas priors. In contrast to this we propose a model that can

incorporate the aforementioned priors in segmentation models. The proposed framework relies

on autoencoder and T-L network models to obtain a non-linear compact representation of the

underlying anatomy, which are used as priors in segmentation.

6.2.2 Convolutional Autoencoder Model and ACNN-Seg

An autoencoder (AE) [267] is a neural network that aims to learn an intermediate representation

from which the original input can be reconstructed. Internally, it has a hidden layer h whose

activations represent the input image, often referred as codes. To avoid the AE to directly copy

its output, the AE are often designed to be undercomplete so that the size of the code is less

than the input dimension as shown in Fig. 6.3. Learning an AE forces the network to capture

the most salient features of the training data. The learning procedure minimises a loss function

Lx(ys
, g(f(y

s
))), where Lx is penalising g(f(y

s
)) being dissimilar from y

s
. The functions g
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Figure 6.4: Training scheme of the proposed anatomically constrained convolutional neural
network (ACNN) for image segmentation task. The encoder part of the proposed T-L network
is used as a regularisation model to enforce the model predictions to follow the distribution of
the learned low dimensional representations or priors.

and f are defined as the decoder and encoder components of the AE.

In the proposed method, the AE is integrated into the standard segmentation network, de-

scribed in Sec. 6.2.1, as a regularisation model to constrain class label predictions y towards

anatomically meaningful and accurate outputs. The cross-entropy loss function operates on in-

dividual pixel level class predictions, which does not guarantee global consistency and plausible

anatomical shapes even though the segmentation network has a receptive field larger than the

size of structures to be segmented. This is due to the fact that back-propagated gradients are

parametrised only by pixel-wise individual probability divergence terms and thus provide little

global context.

To overcome this limitation, class prediction label maps are passed through the AE to obtain a

lower dimensional (e.g. 64 dimensions) parametrisation of the segmentation and its underlying

structure [240]. By performing AE-based non-linear lower dimensional projections on both

predictions and ground-truth labels, as shown in Fig. 6.4, we can build our ACNN-Seg training

objective function though a linear combination of cross-entropy (Lx), shape regularisation loss
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Table 6.1: Stacks of 2D cardiac MR images (200) are segmented into LV endocardium and
myocardium, and the segmentation accuracy is evaluated in terms of Dice metric and surface
to surface distances. The ground-truth labels are obtained from high resolution 3D images
acquired from same subjects, which do not contain motion and blocky artefacts. The proposed
approach (ACNN-Seg) is compared against state-of-the-art slice by slice segmentation (2D-
FCN [264]) method, 3D-UNet model [50], cascaded 3D-UNet and convolutional AE model
(AE-Seg) [217], proposed sub-pixel segmentation model (3D-Seg) and the same model with
motion augmentation used in training (3D-Seg-MAug).

Method Mean Hausdor↵ Dice # Trainable
Dist. (mm) Dist. (mm) Score (%) Parameters

E
n
do
-c
ar
di
um

2D-FCN [264] 2.07±0.61 11.37±7.15 .908±.021 1.39 ⇥ 106

3D-Seg 1.77±0.84 10.28±8.25 .923±.019 1.60 ⇥ 106

3D-UNet [50] 1.66±0.74 9.94±9.22 .923±.019 1.64 ⇥ 106

AE-Seg [217] 1.75±0.58 8.42±3.64 .926±.019 1.68 ⇥ 106

3D-Seg-MAug 1.59±0.74 8.52±8.13 .928±.019 1.60 ⇥ 106

AE-Seg-M 1.59±0.48 7.52±3.78 .927±.017 1.91 ⇥ 106

ACNN-Seg 1.37±0.42 7.89±3.83 .939±.017 1.60 ⇥ 106

p-values p ⌧ 0.001 p ⇡ 0.890 p ⌧ 0.001 -

M
yo
-c
ar
di
um

2D-FCN [264] 1.58±0.44 9.19±7.22 .727±.046 1.39 ⇥ 106

3D-Seg 1.48±0.51 10.15±10.58 .773±.038 1.60 ⇥ 106

3D-UNet [50] 1.45±0.47 9.81±11.77 .764±.045 1.64 ⇥ 106

AE-Seg [217] 1.51±0.29 8.52±2.72 .779±.033 1.68 ⇥ 106

3D-Seg-MAug 1.37±0.41 9.41±9.17 .785±.041 1.60 ⇥ 106

AE-Seg-M 1.32±0.26 7.12±2.79 .791±.036 1.91 ⇥ 106

ACNN-Seg 1.14±0.22 7.31±3.59 .811±.027 1.60 ⇥ 106

p-values p ⌧ 0.001 p ⇡ 0.071 p ⌧ 0.001 -

however, additional convolutional kernels are used in the AE as suggested in [217]. To observe

the influence of the AE model’s capacity on the AE-Seg model’s performance, we performed

experiments using di↵erent number of AE pars, and the largest capacity case is denoted by

AE-Seg-M.

The results of the experiments are provided in Table 6.1 together with the capacity of each

model. Statistical significance of the results is verified by performing the Wilcoxon signed-

rank test between the top two performing methods for each evaluation metric. Based on these

results we can draw three main conclusions: (I) Slice by slice analysis [7, 264] significantly

under-performs compared to the proposed sub-pixel and ACNN-Seg segmentation methods. In

particular, the dice score metrics are observed to be lower since 2D analysis can yield poor
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2D-FCN ACNN-Seg 3D-GT

3D-Seg-MAug ACNN-Seg 3D-GT

Figure 6.7: Segmentation results on two di↵erent 2D stack cardiac MR images. The proposed
ACNN model is insensitive to slice misalignments as it is anatomically constrained and it makes
less errors in basal and apical slices compared to the 2D-FCN approach. The results generated
from low resolution image is better correlated with the HR ground-truth annotations (green).

performance in basal and apical parts of the heart as shown in Fig. 6.7. Previous slice by slice

segmentation approaches validated their methods on LR annotations; however, we see that the

produced label maps are far o↵ from the true underlying ventricular geometry and it can be a

limiting factor for the analysis of ventricle morphology. Similar results were obtained in clinical

studies [66], which however required HR image acquisition techniques. (II) The results also

show that introduction of shape priors in segmentation models can be useful to tackle false-

positive detections and motion-artefacts. As can be seen in the bottom row of Fig. 6.7, without

the learnt shape priors, label map predictions are more prone to imaging artefacts. Indeed, it

is the main reason why we observe such a large di↵erence in terms of Hausdor↵ distance. For

endocardium labels, on the other hand, the di↵erence in dice score metric is observed to be less

due to the larger size of the LV blood pool compared to the myocardium.

Lastly (III), we observe a performance di↵erence between the cascaded AE based segmenta-

tion (AE-Seg [217]) and the proposed ACNN-Seg models: the segmentations generated with

the former model are strongly regularised due to the second stage AE. It results in reduced

Hausdor↵ distance with marginal statistical significance, but the model overlooks fine details

of the myocardium surface since the segmentations are generated only from the coarse level

feature-maps. More importantly, cascaded approaches add additional computational complex-



Anatomically constrained CNN: 
Super-resolution framework

132 Chapter 6. Learning Anatomical Shape Priors through Neural Networks

7/5/2017 Preview

2/2

Segmentation
( . ) 

Input Image 

GT Labels ( )

En
co

de
r

f(.
) 

En
co

de
r

f(.
) 

X-
En

tro
py

 L
os

s 
 

Prediction 

ACNN-Segmentation Model
 

Gradients for Global Loss
Gradients for Pixel-Level Loss

 E
uc

lid
ea

n 
Lo

ss
 

Super Res
( . ) 

Input Image 

GT Image ( ) 

Pr
ed

ic
to

r
p(

.)
Pr

ed
ic

to
r

p(
.)

Sm
oo

th
 L

1 
Lo

ss
  

Prediction 

ACNN-Super Resolution Model
 

Gradients for Global Loss
Gradients for Pixel-Level Loss

  E
uc

lid
ea

n 
Lo

ss
 

Figure 6.5: Training scheme of the proposed anatomically constrained convolutional neural net-
work (ACNN) for image super-resolution task. The predictor part of the proposed T-L network
is used as a regularisation model to enforce the model predictions to follow the distribution of
the learned low dimensional representations or priors.

both the AE and the predictor converge, the two models are trained jointly in the second stage.

The encoder f is updated using two separate back-propagated gradients (@Lx
@✓f

,
@Lh
@✓f

) and the

two loss functions are scaled to match their range. The first gradient encourages the encoder

to generate codes that could be easily extracted by the predictor while the second gradient

making sure that a good segmentation-reconstruction can be obtained at the output of the

decoder. Training details are further discussed in Section 6.3.2. It is important to note that the

T-L regulariser model is used only at training time but not during inference; in other words,

the fully convolutional (FCN) segmentation and super-resolution models can still be used for

applications using di↵erent image sizes. In this paper, the proposed SR model is referred to as

ACNN-SR and its training scheme is shown in Figure 6.5.

Lhp = k p (�(x);✓p) � p (y
r
;✓p) k

2
2

min
✓r

✓
 `1 (�(x ;✓r) � y

r
) + �1 · Lhp +

�2

2
||w||

2
2

◆ (6.2)

The training objective shown above is composed of weight decay, pixel-wise and global loss

terms. Here �1 and �2 determine the weight of shape priors and weight decay terms while

the smooth `1 norm loss function  quantifies the reconstruction error. The global loss Lhp
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Super-resolution results

6.3. Applications and Experiments 143

Table 6.3: Average inference time (Inf-T) of the SR models per input LR image (120x120x12)
using a GPU (GTX-1080). ACNN-SR and SR-CNN [192] models are given the same number of
filters and capacity. MOS [143] results, received from the clinicians (R1 and R2), are reported
separately.

SSIM [269] MOS-R1 MOS-R2 Inf-T

Linear .777±.043 2.71±0.82 2.60±.91 -
B-Spline .779±.053 2.77±0.89 2.64±.84 -
SR-CNN [192] .783±.046 3.59±1.05 3.85±.70 .29 s
3D-UNet [50] .784±.045 3.55±0.92 3.99±.71 .07 s
ACNN-SR .796±.041 4.36±0.62 4.25±.68 .06 s
p-values p ⌧ 0.001 p < 0.001 p < 0.01 -

experiments since small misalignments between LR-HR image pairs could introduce large errors

in the evaluation due to pixel by pixel comparisons. More importantly, intensity statistics of

the images are observed to be di↵erent for this reason PSNR measurements would not be

accurate. In addition to the SSIM metric, we used the mean opinion score (MOS) testing

[143] to quantify the quality and similarity of the synthesised and real HR cardiac images.

Two expert cardiologists were asked to rate the upsampled images from 1 (very poor) to 5

(excellent) based on the accuracy of the reconstructed LV boundary and geometry. To serve

as a reference, the corresponding clinical LR and HR images are displayed together with the

upsampled images that are anonymised for a fair comparison.

Figure 6.9: Image super-resolution (SR) results. From left to right, input low resolution MR
image, baseline SR approach [192] (no global loss), the proposed anatomically constrained SR
model, and the ground-truth high resolution acquisition.

In Table 6.3, SSIM and MOS scores for the standard interpolation techniques, SR-CNN, and

the proposed ACNN-SR models are provided. In addition to the increased image quality, the

ACNN-SR model is computationally more e�cient in terms of run-time in comparison to the

SR-CNN model [192] by a factor of 5. This is due to the fact that ACNN-SR performs feature

Baseline SR 
approachOriginal LR image Anatomically 

constrained SR model
Ground-truth  

HR image
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• Histogram of the learnt low-dimensional latent representations 
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Figure 6.6: Histogram of the learnt low-dimensional latent representations (randomly selected
16 components are shown). The codes in general follow a smooth and normal distribution
which is important for the training of ACNN models.)

low-dimensional data manifold and capture its local smooth structure. In addition to the

smoothness of the latent distributions, the extracted codes are expected to be correlated since

the decoder merges some of the codes along the three spatial dimensions to construct input

feature maps for the transposed convolutions, but this characteristic is not a limitation in our

study.

6.3 Applications and Experiments

In this section, we present three di↵erent applications of the proposed ACNN model: 3D-US

and cardiac MR image segmentation, as well as cardiac MR image SR. The experiments focus

on demonstrating the importance of shape and label priors for image analysis. Additionally, we

analyse the salient information stored in the learnt hidden representations and correlate them

with clinical indices, showing their potential use as biomarkers for pathology classification. The

next subsection describes the clinical datasets used in our experiments.
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Figure 6.10: Anatomical variations captured by the latent representations in T-L network
(swipe from µ � 2� to µ + 2�). Based on our observation, the first and second dimensions
capture the variation in the wall thickness of the myocardium (x-axis) and lateral wall of the
ventricle (y-axis).

cardiac related pathologies. In particular, we observed that some latent dimensions are more

commonly used than others in tree node splits. By sampling codes from the latent space

across these dimensions, we observed that the network captures the variation in wall thickness

and blood pool size as shown in Fig. 6.10. Since we obtain a regular and smooth latent

representation, it is possible to transverse along the latent space and generate LV shapes by

interpolating between data points. It is important to note that classification accuracies can be

further improved by training the AE and T-L models with a classification objective. Our main

goal in this experiment was to understand whether the enforced prior distributions contain

anatomical information or they are abstract representations only meaningful to the decoder of

the AE.
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Summary and Conclusions

• Machine learning plays a crucial role in
– Image reconstruction
– Image quantification and analysis
– Computer-aided detection and decision support

• Truly intelligent computer-aided 
diagnosis requires
– Learning from unlabelled, large-scale 

population data
– Integration of imaging and non-imaging 

information, e.g. clinical records and genetics 

Validation is challenging

Optimisation of imaging pipeline with respect 
to clinically useful information

Requires collaboration between computer 
scientists, engineers and clinicians



Current state-of-the-art

Acquisition Reconstruction Analysis

Define relevant 
information



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

Acquisition Reconstruction Analysis

Define relevant 
information

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning



Future: End-to-end optimisation of 
entire imaging pipeline via deep learning

End-to-end optimisation of acquisition, reconstruction, 
analysis & interpretation via deep learning
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