1. Wang M, Lin T, Wang L, et al. Uncertainty-inspired open set learning for retinal anomaly identification[J]. Nature Communications, 2023.[PDF]
2. Gao S, Chen Y, Shi F, et al. LKG-Net: lightweight keratoconus grading network based on corneal topography[J]. Biomedical Optics Express, 2023.[PDF]
3. Jiayan Shen, Zhongyue Chen, Yuanyuan Peng, Siqi Zhang, Chenan Xu, Weifang Zhu, Haiyun Liu, Xinjian Chen. Morphological prognosis prediction of choroid neovascularization from longitudinal SD-OCT images. Medical Physics. 2023.[PDF]
4. Wei Tang , Xinjian Chen, Jin Yuan, Qingquan Meng, Fei Shi, Dehui Xiang , Zhongyue Chen and Weifang Zhu. Multi-scale and local feature guidance network for corneal nerve fiber segmentation. Physics in Medicine & Biology. 2023.[PDF]
5. Xiao Tan, Xinjian Chen, Qingquan Meng, Fei Shi, Dehui Xiang, Zhongyue Chen, Lingjiao Pan, Weifang Zhu. OCT2Former: A retinal OCT-angiography vessel segmentation transformer. Computer Methods and Programs in Biomedicine. 2023.[PDF]
6. Xu C, Chen Z, Zhang X, Peng Y, Tan Z, Fan Y, Liao X, Chen H, Shen J, Chen X. Accurate C/D ratio estimation with elliptical fitting for OCT image based on joint segmentation and detection network. Computers in Biology and Medicine. 2023 [PDF]
7. Shen Y, Li J, Zhu W, et al. Graph Attention U-Net for Retinal Layer Surface Detection and Choroid Neovascularization Segmentation in OCT Images. IEEE Transactions on Medical Imaging, 2023.[PDF]
8. Shi F, Yang C, Jiang Q, et al. Segmentation of retinal detachment and retinoschisis in OCT images based on complementary multi-class segmentation networks[J]. Physics in Medicine & Biology.2023.[PDF]
9. Zhang P, Chen X, Yin Z, et al. Interactive Skin Wound Segmentation Based on Feature Augment Networks[J]. IEEE Journal of Biomedical and Health Informatics, 2023..[PDF]
10. Diao S, Su J, Yang C, et al. Classification and segmentation of OCT images for age-related macular degeneration based on dual guidance networks[J]. Biomedical Signal Processing and Control, 2023.[PDF]
11. Xiang D, Zhang B, Lu Y, et al. Modality-specific segmentation network for lung tumor segmentation in PET-CT images[J]. IEEE Journal of Biomedical and Health Informatics, 2022, 27(3): 1237-1248.[PDF]
12. Xiang D, Yan S, Guan Y, et al. Semi-Supervised Dual Stream Segmentation Network for Fundus Lesion Segmentation[J]. IEEE Transactions on Medical Imaging, 2022, 42(3): 713-725.[PDF]
13. Zhou Z, Bian Y, Pan S, et al. A dual branch and fine-grained enhancement network for pancreatic tumor segmentation in contrast enhanced CT images[J]. Biomedical Signal Processing and Control, 2023, 82: 104516.[PDF]
14. Yan J, Liu J, Qu Q, et al. Wireless Human Motion Detection with a Highly Sensitive Wearable Pressure Sensing Technology[J]. Advanced Materials Technologies, 2023, 8(12): 2201936.[PDF]
15. Zhou J, Zhou Z, Chen X, et al. A deep learning-based automatic tool for measuring the lengths of linear scars: forensic applications[J]. Forensic Sciences Research, 2023, 8(1): 41-49.[PDF]
16. [1]徐明浩,聂宝清,寇文哲.基于RFID的无线无源柔性压力传感器研究[J].传感技术学报,2023,36(11):1695-1700..[PDF]
17. [1]闫金礼,聂宝清,刘杰等.基于LC谐振的柔性无源无线压力传感器系统设计[J].仪表技术与传感器,2023,(01):27-30+53.[PDF]
|
1. Ziting Yin, Xinjian Chen, Weifang Zhu, Dehui Xiang, Qing Peng,Fei Shi,“META-learning-based retinal pathology classification from optical coherence tomography images," SPIE Medical Imaging 2023: Image Processing.[PDF]
2. Dengfeng Liu, Weifang Zhu, Dehui Xiang, Fei Shi, Xinyu Zhuang, Xiaofeng Zhang, Xinjian Chen, "IF-Net: Information fusion network for meibomian gland area and
atrophy area segmentation," SPIE Medical Imaging 2023:Image Processing.[PDF]
3. Hong C, Peng Y, Zhu W, et al. Segmentation of common lesions in age-related macular degeneration based on boundary attention mechanism[C]//Medical Imaging 2023: Image Processing. SPIE, 2023, 12464: 884-890.[PDF]
4. Liu L, Peng Y, Xiang D, et al. Multi-modality network based on CGAN and attention mechanism for glaucoma grading[C]//Medical Imaging 2023: Image Processing. SPIE, 2023, 12464: 820-826.[PDF]
5. Diao S, Chen X, Xiang D, et al. A two-stage unsupervised domain adaptation method for OCT image segmentation[C]//Medical Imaging 2023: Image Processing. SPIE, 2023, 12464: 827-834.[PDF]
6. Xu X, Chen Y, Shi F, et al. Dual-Modality Grading of Keratoconus Severity Based on Corneal Topography and Clinical Indicators[C]//International Workshop on Ophthalmic Medical Image Analysis. Cham: Springer Nature Switzerland, 2023: 102-111.[PDF]
7. Xu J, Wang Z, Zhu W, et al. UAU-Net: United Attention U-Shaped Network for the Segmentation of Pigment Deposits in Fundus Images of Retinitis Pigmentosa[C]//International Workshop on Ophthalmic Medical Image Analysis. Cham: Springer Nature Switzerland, 2023: 52-61.[PDF]
|
1.
基于CNN的睑板腺区域和睑板腺萎缩区域分割模型及方法,等待实审提案,2023101062108,陈新建,刘灯风,朱伟芳.
2.
一种视网膜OCT图像病变多标签分类系统和方法,等待实审提案,202310240656.X,陈新建, 刘铭, 朱伟芳, 石霏.
3.
一种基于配准网络的OCT图像增强方法及应用,等待实审提案,2023101588005,陈新建,谭志苇,石霏.
4.
一种多模态视网膜眼底图像分类方法,等待实审提案,2023105805684,朱伟芳,谭晓,陈新建.
5.
一种基于图像处理的睑板腺腺体分割方法,2023106125902,等待实审提案,陈新建,刘灯风,朱伟芳.
6.
一种基于深度学习的多视图协同图像分割方法和系统,等待实审提案,2023107427242,石霏,周健,夏文涛.
7.
基于特征重构的无监督域自适应OCT图像分割方法及系统,等待实审提案,2023106681918,石霏,刁胜勇,陈新建.
8.
一种基于域自适应的OCT图像脉络膜分割网络模型及方法,等待实审提案,2023101242312,石霏,刁胜勇,陈新建,孟庆权.
|